Достижения биологии. Какие достижения биологии человек использует в своей жизни и практике? Достижения современной биологии за последние 100 лет

Конец XX века и начало XXI , повлекли за собой вереницу открытий. Новые открытия в биологии выстраивают перед собой кучу вопросов, которые заставляют задумать ученых о том, что все не так просто в этом мире. Поиск истины – вот главная цель исследователей.

Открытия в биологии XX века

В 1951 году исследователь Эрвин Чаргаффу пришел к одному выводу, который в корне изменил взгляд на структуру нуклеиновых кислот. Ранее считалось, что все нуклеиновые кислоты созданы из тетра-блоков, поэтому лишены специфичности. В течение трех лет ученый занимался исследованием и, наконец, смог доказать, что нуклеиновые кислоты, полученные из разных источников, отличаются своим составом друг от друга – они специфичны. Ученый выстроил модель ДНК, которая своим видом была похожа на двойную спираль, при помещении на плоскость она была похожа на лестницу. Было выявлено, что строение одной отдельно взятой ветки ДНК определяет строение другой ее ветки – это связано с тем, что основание примыкающих определяет последовательность других направляющих. Таким образом, было определено новое свойство ДНК – комплиментарность.

Далее были необходимы исследования в области молекулярной биологии, которые бы провели расшифровку механизма репликации и транскрипции ДНК. Ученые предположили, что нить раскручивается, ее нити расходятся, а далее, в соответствии с правилом комплиментарности, из каждой нити образовывается молекула. Чуть позже опыты подтвердили данную гипотезу.

В 1954 году Георгий Антонович Гамов, на основании исследования Эрвина Чаргаффа, предположил, что аминокислоты закодированы из сочетания трех нуклеотидов.

В 1961 году французские ученые Жак Моно и Франсуа Жакоб воссоздали схему, регулирующую активные гены. Ученые говорили о том, что ДНК имеет не только информационные гены, но и гены-операторы и гены-регуляторы.

Новые открытия в биологии XXI века

В 2007 году объединение ученых университета Висконсис-Мэдисон и Киотского университета провели один эксперимент, благодаря которому клетки кожи взрослого человека стали вести себя как стволовые клетки эмбриона. Клетка смогла трансформироваться практически в любой вид. Финансовые рамки можно отбросить, ведь таким образом, клетки из ДНК человека могут стать органом для пересадки. Выращенный таким способ орган, не будет отторгаться организмом пациента.

Исследование «Геном человека», завершилось в 2006 году. Данный проект был назван самым важным исследованием в области биологии. Главная цель работы – определить последовательность нуклеотидов, а также изучить около 20 000 тыс. генов человека. Под руководством ученого Джеймса Уотсона, в 2000г. была представлена часть структуры генома, а в 2003г. исследование структуры были завершены. Невзирая на то, что официально «Геном человека» был закончен в 2006 году, анализ некоторых участков продолжается и сегодня. Данное исследование открывает новые теории эволюции. Знания, полученные в ходе работы, уже активно используются в медицине.

В XX веке биология как наука шла вперед большими шагами, а начало XXI века уже примечательно открытиями. Можно предположить, что новые открытия в биологии откроют много тайн и загадок, которые, возможно, смогут перевернуть все былые знания и утвержденные теории.

Десятка значимых открытий первого десятилетия XXI века – видео

2016 год запомнится историческими научными событиями. Бал правят физики и астрономы: они совершили самые обсуждаемые и волнующие общественность открытия, связанные с черными дырами, теорией относительности и иными мирами. Многого добились и биологи, модифицирующие геномы и экспериментирующие на людях.

Третий не лишний

В апреле 2016 года в Мексике появился на свет ребенок, зачатый с участием митохондриальной ДНК третьего человека. Метод «трех родителей» заключается в пересадке ДНК митохондрий от женщины-донора в яйцеклетку матери. Ученые полагают, что это позволяет избежать влияния мутаций со стороны матери, способных вызвать такие заболевания, как диабет или глухота.

Операцию проводил американский хирург Джон Чан (John Zhang). Мексику он выбрал потому, что в США применение этой методики запрещено. Ребенок родился здоровым, никаких негативных последствий у него на настоящий момент не отмечено.

Генная революция

16 ноября журнал Nature сообщил, что китайские ученые впервые модифицировали геном живого человека. Конечно, не весь, а небольшую его часть. Пациенту с метастазирующим раком легких модифицировали T-лимфоциты с помощью технологии CRISPR, отключив ген, кодирующий белок PD-1, который снижает активность иммунных клеток и способствует развитию рака.

По словам исследователей, все прошло успешно, и пациент в ближайшее время получит вторую инъекцию. Кроме того, в испытаниях примут участие еще 10 человек, каждому из которых сделают от двух до четырех инъекций. Все добровольцы будут наблюдаться в течение шести месяцев для проверки, может ли лечение вызвать серьезные побочные эффекты.

По минимуму

В марте в журнале Science ученые сообщили, что им удалось создать бактерию с синтетическим геномом, убрав из него все гены, без которых организм мог обойтись. Для этого использовали микоплазму M. mycoides, чей изначальный геном состоял примерно из 900 генов, которые были классифицированы как необходимые или несущественные. На основе всей доступной информации и с помощью постоянных экспериментальных проверок ученые смогли определить минимальный геном — необходимый набор генов, жизненно необходимых для существования бактерии.

В результате был получен новый штамм бактерий — JCVI-syn3.0 с геномом, сокращенным вдвое по сравнению с предыдущей версией — 531 тысяча спаренных оснований. Он кодирует 438 белков и 35 видов регуляторной РНК — всего 437 генов.

Превратить в яйцо

Еще одно достижение биотехнологий связано со стволовыми клетками, полученными от мышей. Японские ученые из Университета Кюсю в Фукуоке впервые добились их трансформации в яйцеклетки (ооциты). Фактически они получили из стволовых клеток многоклеточный живой организм.

Ооцит относится к клеткам, обладающим тотипотентностью — способностью делиться и превращаться в клетки всех других видов. Ученые подвергли полученные ооциты экстракорпоральному оплодотворению. Клетки затем переносились в тело суррогатных самок, где развивались в здоровых детенышей.

Созданные в лабораторных условиях мыши обладали фертильностью и могли рожать здоровых грызунов. Кроме того, эмбриональные стволовые клетки могли быть повторно воспроизведены из яйцеклеток, полученных в культуре и оплодотворенных в пробирке.

Зика - смертоносное оружие

Комар жёлтолихорадочный

Малоизвестный и впервые выявленный в Уганде в 1947 году вирус Зика перерос в конце прошлого года в международную пандемию, когда быстро распространяющееся с комариными укусами заболевание проникло через границы Латинской Америки. Несмотря на малую симптоматику или полное ее отсутствие, распространение вируса сопровождалось резким всплеском микроцефалии, редкого заболевания у детей, чья характерная особенность заключается в значительном уменьшении размеров черепа и, соответственно, головного мозга. Это открытие заставило исследователей искать связь между Зикой и развитием этих анатомических аномалий. И доказательства не заставили себя долго ждать.

В январе 2016 года вирус Зика нашли в плаценте двух беременных женщин, чьи дети впоследствии родились с микроцефалией. В тот же месяц Зика был обнаружен в мозге у других новорожденных, которые умерли вскоре после рождения. Эксперименты с чашкой Петри, результаты которых были опубликованы в начале марта, рассказали о том, как вирус Зика напрямую атакуют клетки, принимающие участие в развитии мозга, существенно замедляя его рост. В апреле подтвердились опасения, о которых ранее говорили многие ученые: вирус Зика на самом деле вызывает микроцефалию, а также ряд других тяжелых дефектов развития мозга.

К настоящему моменту лекарства от вируса Зика не существует, ведутся клинические испытания вакцины на основе ДНК.

Первые генно-модифицированные люди

CRISPR - это революционный инструмент для генной модификации, обещающий не только излечить все болезни, но и наделить человека улучшенными биологическими способностями. В этом году китайская команда ученых впервые использовала его для лечения пациента, страдавшего агрессивной формой рака легких.

Для его лечения из взятой крови пациента сначала были удалены все иммунные клетки, а затем использован метод CRISPR для «выключения» особого гена, который может использоваться раковыми клетками для еще более быстрого распространения по организму. После этого модифицированные клетки были помещены обратно в организм пациента. Ученые считают, что подвергшиеся редактированию клетки смогут помочь человеку побороть рак, однако всех результатов этого клинического испытания пока не раскрывают.

Независимо от результатов этого конкретного случая, использование метода CRISPR для лечения людей открывает новую главу в персонализированной медицине. Здесь по-прежнему остается множество нерешенных вопросов - в конце концов, CRISPR является новой технологией. Однако становится понятно, что использование технологии, позволяющей модифицировать свой собственный генетический код, уже не является просто очередным примером научной фантастики. И за право обладания этой технологией уже начались настоящие патентные войны.

Самое долгоживущее позвоночное

В конце концов может оказаться так, что секрет долголетия мы узнаем не из крупных мировых научных центров, а от гренландской акулы. Согласно исследованию, опубликованному в этом году в журнале Science, это удивительное глубоководное позвоночное может жить более 400 лет. Радиоуглеродный анализ 28 самок гренландской акулы показал, что эти животные являются самыми долгоживущими позвоночными на нашей планете. Возраст старейших представителей составляет от 272 до 512 лет.

Так в чем же заключается секрет столь невероятного долголетия гренландской акулы? Ученые точно пока не знают, но догадываются, что, вероятнее всего, это связано с тем, что это позвоночное обладает экстремально медленным процессом метаболизма, что приводит к медленному росту и половому созреванию. Еще одним оружием в борьбе со старением у этих акул, по всей видимости, является экстремально низкая температура окружающей среды. Никто не хочет провести пару лет на дне Арктического океана и потом вернуться с отчетом о том, как все прошло?

Мышь пошла

Спинальная травма — одна из самых остро стоящих проблем современной нейронауки. Пока никто не смог полноценно справиться с перебитым спинным мозгом. Однако именно в 2016 году вышло несколько экспериментальных работ, которые показывают, что не всё так плохо. В одной из них важную роль сыграли учёные из Санкт-Петербурга.

Учёные из лаборатории нейропротезов Института трансляционной биомедицины Санкт-Петербургского государственного университета под руководством профессора, доктора медицинских наук Павла Мусиенко разработали технологию нейростимуляции спинного мозга ниже места травмы и опробовали её на крысах.

Тема урока : Биология - наука о живой природе.

Основные цели и задачи : Дать ученикам 5-ого класса начальные представления о том, что такое биология и чем она занимается.

Особое внимание уделяется многообразию биологически исследований и формированию отличий живой природы от неживой.

План урока :

  1. Что изучает биология?
  2. Подразделы биологии
  3. Где используются достижения биологии?
  4. Представители живого мира
  5. Чем живые организмы отличаются от неживых?

Ход урока

1. Что изучает биология?

Биология как наука о живой природе занимается изучением все ее проявлений. В ее названии присутствуют два греческих слова: «биос», что означает жизнь, и «логос», что значит наука.

В биологии важны все без исключения живые организмы, от самых больших до самых крошечных. Биологи (а именно так называются ученые, которые занимаются биологией) исследуют жизнь во всех ее проявлениях. Чем же именно они занимаются:

  • Изучают строение организмов;
  • Исследуют процесс размножения;
  • Прослеживают происхождение и взаимосвязи между отдельными группами;
  • Изучают связи между объектами живой и неживой природы.

Практическое задание:

Как и в любой другой комплексной науке, в биологии есть множество подразделов. Каждым из них сконцентрирована на разных аспектах природы:

  • Ботаника - наука о растениях;
  • Зоология - наука о животных;
  • Генетика - наука о наследственности и генах;
  • Физиология - наука о жизнедеятельности целостного организма;
  • Цитология - наука о клетках, изучается их строение, функционирование, размножение;
  • Анатомия - наука о внутреннем строении живых организмов, расположении и взаимодействии внутренних органов;
  • Морфология - наука о форме и строении организмов;
  • Микробиология - наука о микроскопических веществах (микробах);

Практическое задание:

Подумайте, на чем сосредоточены следующие науки: эмбриология (наука о развитии зародышей), биогеография (наука, изучающая географическое распределение и размещение животных на планете), бионика (наука о том, как применять в технических устройствах и системах принципы, работающие в живых и неживых организмах), молекулярная биология (наука о хранении и передаче генетической информации, на уровне белков и нуклеиновых кислот), радиобиология (посвящена изучения действия излучений на биологические объекты), космическая биология (изучает возможности жизни организмов в условиях полетов на космических аппаратах и обеспечение жизнедеятельности на космических станциях), фитопатология (наука о болезнях растений), биохимия (изучает состав живых клеток и организмов).

3. Где используются достижения биологии?

Биология относится к теоретическим наукам, однако результаты исследований биологов часто имеют прикладной характер. Где же могут использоваться биологические открытия?

  • Сельское хозяйство - с целью увеличения уровня сбора урожая, роста продуктивности животноводства, изобретение способов борьбы с вредителями.
  • Медицина - изучение полезных свойств объектов живой и неживой природы помогает изобретать новые лекарственные средства.
  • Охрана окружающей среды - биология показывает, в каких направлениях человек разрушает существующий в природе порядок вещей и помогает находить способы борьбы с этими явлениями.

4. Представители живого мира

В живом мире сегодня, как и 4 млрд. лет назад, выделяют:

  • Доклеточные организмы - вирусы. Они становятся живыми только тогда, когда имеют возможность проявиться в клетках живых организмов.
  • Прокариоты. У них есть клетка, у клетки нет ядра. Другое название бактерий - бактерии.
  • Эукариоты. Сюда относят грибы, растения и животных. У них в клетках есть сформированные ядра.

Бактерии, грибы, растения и животные образуют 4 царства живых организмов.

Практическое задание:

Какие вирусы Вы знаете? (вирус, вызывающий ОРВИ, различные виды гриппа и т.д.).

5. Чем живые организмы отличаются от неживых?

Если об объектах живой природы мы уже говорили, то вопросов о том, что представляют собой объекты неживой природы, пока еще не касались. К ним, прежде всего, относятся камни, лед, песок и прочее. Каковы же отличительные свойства живых существ?

  • Они дышат.
  • Они питаются. Ни один живой организм не может существовать без того, чтобы черпать энергию извне. А вот что он будет потреблять и перерабатывать - мясо, молоко, крупу или морковь - уже и не столь важно.
  • Они размножаются, то есть воспроизводят себе подобных. Каждый Без этого жизнь на планете давно бы уже иссякла и закончилась. Именно в этом свойстве проявляется бесконечность жизни на планете Земля.
  • Они реагируют на воздействия окружающей среды и зависят от тех условий, в которых живут. Вот почему медведи на зиму залегают в спячку, а зайцы меняют свой окрас.
  • У живых организмов есть клеточная структура. Они могут состоять из одной клетки (есть специальный класс одноклеточных), а могут из многих (например, животные или человек). Клеток нет только у вирусов, поэтому они могут жить исключительно в организмах других животных, растений или человека.
  • Живые существа сходны по химическому составу - в их строении присутствуют органические соединения (белки. Жиры, углеводы), а также неорганические (самый распространенный из них - вода).
  • В большинстве своем живые организмы способны к передвижению. О такой возможности животных знают все, а вот что с растениями? Наличие корней и нахождение в почте делает их неспособными к проявлению такого свойства. Однако это не совсем так. Подсолнечник, к примеру, меняет свое положение в зависимости от движения Солнца. Точно также листья многих растений реагируют на солнечный свет.

По этим признакам их можно различить, однако в состоянии покоя некоторые живые объекты не проявляют признаков жизнедеятельности (например, семена растений, пыльца цветков).

Оценивание : Попросите учеников ответить на проверочные вопросы. По их ответам можно будет определить, насколько они усвоили материал урока:

  • Что такое биология?
  • Что изучает биология?
  • Какие подразделы биологии Вы знаете?
  • Какие царства живых организмов Вы знаете?
  • Каковы главные отличия живого организма от объектов неживой природы.

6. Итоги урока:

В ходе проведённого урока ученики познакомились:

  • С тем, что такое биология, какие вопросы она изучает, на что направлено ее основное внимание.
  • Какие есть разделы биологии и чем они занимаются.
  • В каких сферах используются достижения биологии.
  • Чем отличаются живые организмы от неживых.

Домашнее задание:

В качестве домашнего задания следует дать ученикам возможность написать творческую работу «Где используются достижения биологии», поскольку данный вопрос в рамках урока был рассмотрен очень поверхностно.

Наиболее важными событиями в области биологии, повлиявшими на весь ход ее дальнейшего развития, являются: установление молекулярной структуры ДНК и ее роли в передаче инфор­мации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс); расшифровка генетического кода (Р. Холли, Х.-Г. Корана, М. Ниренберг); открытие структуры гена и генетической регуляции синтеза белков (А. М. Львов, Ф. Жакоб, Ж.-Л. Моно и др.); формулировка клеточной теории (М. Шлейден, Т. Шванн, Р. Вирхов, К. Бэр); исследование закономерностей наследственности и изменчивости (Г. Мендель, Г. де Фриз, Т. Морган и др.); формулировка принципов современной систематики (К. Линней), эволюционной теории (Ч. Дарвин) и учение о биосфере (В.И. Вернад­ский).

Значимость открытий последних десятилетий еще предстоит оценить, однако наиболее крупны­ми достижениями биологии были признаны: расшифровка генома человека и других организмов, определение механизмов контроля потока генетической информации в клетке и формирующем­ся организме, механизмов регуляции деления и гибели клеток, клонирование млекопитающих, а также открытие возбудителей «коровьего бешенства» (прионов).

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, привели нас к пониманию того, что у че­ловека есть всего около 25-30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество участков и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов- мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы значительного количества людей, и тогда станет понятно, в чем же все-таки их различие. Эти цели поставлены перед целым рядом ведущих лабораторий всего мира, работающих над реа­лизацией программы «ENCODE».

Биологические исследования являются фундаментом медицины, фармации, широко использу­ются в сельском и лесном хозяйстве, пищевой промышленности и других отраслях человеческой деятельности.

Хорошо известно, что только «зеленая революция» 1950-х годов позволила хотя бы частично решить проблему обеспечения быстро растущего населения Земли продуктами питания, а живот­новодство - кормами за счет внедрения новых сортов растений и прогрессивных технологий их выращивания. В связи с тем, что генетически запрограммированные свойства сельскохозяйствен­ных культур уже почти исчерпаны, дальнейшее решение продовольственной проблемы связывают с широким введением в производство генетически модифицированных организмов.

Производство многих продуктов питания, таких как сыры, йогурты, колбасы, хлебобулочные изделия и др., также невозможно без использования бактерий и грибов, что является предметом биотехнологии.

Познание природы возбудителей, процессов течения многих заболеваний, механизмов им­мунитета, закономерностей наследственности и изменчивости позволили существенно снизить смертность и даже полностью искоренить ряд болезней, таких, например, как черная оспа. С по­мощью новейших достижений биологической науки решается и проблема репродукции человека. Значительная часть современных лекарственных препаратов производится на основе природного сырья, а также благодаря успехам генной инженерии, как, например, инсулин, столь необходи­мый больным сахарным диабетом, что в основном синтезируется бактериями, которым перенесен соответствующий ген.

Не менее значимы биологические исследования для сохранения окружающей среды и раз­нообразия живых организмов, угроза исчезновения которых ставит под сомнение существование человечества.

Наибольшее значение среди достижений биологии является тот факт, что они лежат даже в основе построения нейронных сетей и генетического кода в компьютерных технологиях, а так­же широко используются в архитектуре и других отраслях. Вне всякого сомнения, наступивший XXI век является веком биологии.

Достижения биологии последнего времени привели к возникновению совершенно новых направлений в науке. Так, установление молекулярной природы гена послужило основой для генной инженерии - комплекса методов, с помощью которых возможно конструирование про- и эукариотических клеток с новой генетической программой. На этой основе налажено промышленное производство антибиотиков, гормонов (инсулина), интерферона, витаминов, ферментов и других биологически активных препаратов.
Среди достижений биологии можно отметить описание большого числа видов живых организмов, существующих на Земле, создание клеточной, эволюционной, хромосомной теории, расшифровка структуры белка и нуклеиновых кислот и т.д. На практике это способствовало увеличению эффективности производства сельскохозяйственной продукции, развитию медицины, биотехнологии, созданию основ рационального природопользования.

Те, кто следит за достижениями молекулярной биологии , должно быть, уже привыкли, что в этой молодой науке, вступившей всего лишь в третье десятилетие своего существования, крупные открытия совер-шаются часто, даже очень часто. Всего лишь 17 лет назад американец Джеймс Уотсон и англичанин Фрэнсис Крик предложили гипотезу о строении молекулы ДНК, которая, по их мнению, не разделявшемуся, впрочем, в то время большинством биологов, являлась хранителем генетической информации. Очень скоро, прямо-таки в фантастически сжатые сроки, мнение Уотсона и Крика о том, что ДНК действительно несет запись о всех генах организма, было доказано экспериментально. К началу шестидесятых годов стало ясно, что генетическая информация с молекул ДНК передается на похожие на них по своей структуре молекулы РНК. Последние соединяются с особыми структурами клетки - рибосомами, в которых и происходит синтез белка. Немногим ранее Г. Гамов (США), Ф. Крик и другие создали логически завершенную модель генетического кода. Самое важное заключалось в том, что было строго указано, для чего клетке нужна генетическая информация (синтез специфических белков, которые и определяют свойство жизни и возможность осуществления многообразных жизненных функций). Было показано и как отдельные элементы молекулы ДНК (по мысли Гамова, с которой все согласились, тройки нуклеотидов, расположенные вдоль цепи ДНК) кодируют строение синтезируемых в рибосомах белков.
Мало кто ожидал - даже среди весьма проницательных генетиков, - что уже в 1961 году Крик и его три помощника «расправятся» с задачей об общей природе генетического кода. Правда, путь к расшифровке состава отдельных троек, кодирующих аминокислоты, был открыт работой М. Ниренберга и Д. Маттеи, доложенной в Москве летом того же 2000 года. И уж совсем трудно было предполагать, что всего через два с половиной года американцы М. Ниренберг и Ф. Ледер предложат способ, позволяющий выяснить точное строение всех 64 кодовых слов генов. Уже через год генетики знали наследственный алфавит природы.

Но решение этих задач не увеличивало наших знаний о точном строении гена, точном строении молекул отдельных информационных и транспортных РНК. В 1964-1965 годах Холли в США и А. Баев в РФ расшифровали первые, самые маленькие из молекул, обслуживающих генетические таинства, - молекулы транспортных РНК. В 1967 году в лаборатории А. Корнберга в США после многолетних безуспешных попыток удалось синтезировать работоспособную молекулу ДНК фага 0X174. Через год Г. Корана (индиец, переехавший в США) в хитроумном эксперименте сумел синтезировать первый ген для транспортной РНК дрожжей. И вот сейчас, всего через год, выделен чистый ген из живых молекул ДНК !
Как ни парадоксально, этот грандиозный по своему замыслу, выполнению и последствиям для науки эксперимент не был само-целью. Беквит, широко известный специалист в области молекулярных основ реализации генетической информации, в предисловии указывает на главную цель, которую он и его коллеги преследовали, начиная работу. Им было важно найти ключи к разрешению давнего спора о том, когда происходит регуляция генной активности. Имелись две прСогласно первой, сам тен (то есть участок ДНК со строго определенной последовательностью нуклеотидов) может быть ареной регуляции. В таком случае с активированных генов будет списываться информационная РНК, а с репрессированных генов такого списывания происходить не будет.

Таким образом Биология довольно молодая, но довольно прогрессивная наука, довольно полезная для человека.

Loading...Loading...