Этапы переваривания жиров. Всасывание продуктов переваривания пищи Этапы переваривания жиров

В желудочно-кишечном тракте (ЖКТ) отличается от переваривания белков и углеводов тем, что для них требуется предварительный процесс эмульгирования - разбиения на мельчайшие капельки. Некоторая часть жира в виде самых мелких капелек вообще может далее не расщепляться, а всасываться прямо в этом виде, т.е. в виде исходного жира, полученного с пищей.

В результате химического расщепления ферментом липазой эмулльгированных жиров получаются глицерин и жирные кислоты. Они, а также мельчайши капли нерасщеплённого эмульгированного жира, всасываются в верхнем отделе тонкого кишечника в начальных 100 см. В норме всасывается 98% пищевых липидов.

1. Короткие жирные кислоты (не более 10 атомов углерода) всасываются и переходят в кровь без каких-либо особенных механизмов. Этот процесс важен для грудных детей, т.к. молоко содержит в основном коротко- и среднецепочечные жирные кислоты. Глицерол тоже всасывается напрямую.

2. Другие продукты переваривания (жирные кислоты, холестерол, моноацилглицеролы) образуют с желчными кислотами мицеллы с гидрофильной поверхностью и гидрофобным ядром. Их размеры в 100 раз меньше самых мелких эмульгированных жировых капелек. Через водную фазу мицеллы мигрируют к щеточной каемке слизистой оболочки. Здесь мицеллы распадаются и липидные компоненты проникают внутрь клетки, после чего транспортируются в эндоплазматический ретикулум.

Желчные кислоты частично также могут попадать в клетки и далее в кровь воротной вены, однако большая их часть остается в химусе и достигает подвздошной кишки, где всасывается при помощи активного транспорта.

Ресинтез липидов в энтероцитах

Ресинтез липидов – это повторный синтез липидов в стенке кишечника из поступающих сюда экзогенных жирных кислот и глицерина, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволит переносить по крови в ткани.

Поступившая в энтероцит жирная кислота обязательно активируется через присоединение коэнзима А. Образовавшийся ацил-SКоА участвует в реакциях синтеза эфиров холестерола, триацилглицеролов и фосфолипидов.

Триацилглицеролы (ТАГ) представляют собой сложные эфиры трехатомного спирта глицерола (глицерина) и высших жирных кислот. Триацилглицеролы, содержащие остатки одинаковых жирных кислот, называются простыми нейтральными жирами, разные остатки – смешанными жирами. Твердые триацилглицеролы называют жирами, жидкие – маслами. В составе твердых жиров преобладают остатки насыщенных высших жирных кислот, в составе жидких жиров – остатки ненасыщенных кислот. В организме животных и человека (жировой ткани, мембранах) присутствуют смешанные жиры с преобладанием ацильных остатков ненасыщенных жирных кислот.

Активация жирной кислоты

Реакция активации жирной кислоты

Ресинтез эфиров холестерола

Холестерол этерифицируется с использованием ацил-S-КоА и фермента ацил-КоА:холестерол-ацилтрансферазы (АХАТ). Реэтерификация холестерола напрямую влияет на его всасывание в кровь. В настоящее время ищутся возможности подавления этой реакции для снижения концентрации ХС в крови.

Ресинтез ХС

Реакция ресинтеза холестерола

Ресинтез триацилглицеролов

Для ресинтеза ТАГ есть два пути:

Первый путь, основной – 2-моноацилглицеридный – происходит при участии экзогенных 2-МАГ и ЖК в гладком эндоплазматическом ретикулуме энтероцитов: мультиферментный комплекс триацилглицерол-синтазы формирует ТАГ.

Ресинтез ТАГ

Моноацилглицеридный путь образования ТАГ

Поскольку 1/4 часть ТАГ в кишечнике полностью гидролизуется и глицерол в энтероцитах не задерживается, то возникает относительный избыток жирных кислот для которых не хватает глицерола. Поэтому существует второй, глицеролфосфатный, путь в шероховатом эндоплазматическом ретикулуме. Источником глицерол-3-фосфата служит окисление глюкозы, так как пищевой глицерол быстро покидает энтероциты и уходит в кровь. Здесь можно выделить следующие реакции:

Образование глицерол-3-фосфата из глюкозы.

Превращение глицерол-3-фосфата в фосфатидную кислоту.

Превращение фосфатидной кислоты в 1,2-ДАГ.

Синтез ТАГ.

Ресинтез ТАГ

Глицеролфосфатный путь образования ТАГ

Ресинтез фосфолипидов

Фосфолипиды синтезируются также как и в остальных клетках организма. Для этого есть два способа. Первый – с использованием 1,2-ДАГ и активных форм холина и этаноламина для синтеза фосфатидилхолина или фосфатидилэтаноламина. Второй путь – через синтезируемую in situ фосфатидную кислоту (см "Cинтез фосфолипидов").

S09-05-resintez-shema

Общая схема ресинтеза фосфолипидов

После ресинтеза фосфолипиды, триацилглицеролы, холестерол и его эфиры упаковываются в особые транспортные формы липидов – липопротеины и только в такой форме они способны покинуть энтероцит. В кишечнике формируются два вида липопротеинов – хиломикроны и липопротеины высокой плотности.

Любое нарушение внешнего обмена липидов (проблемы переваривания или всасывания) проявляется увеличением содержания жира в кале – развивается стеаторея.

Причины нарушений переваривания липидов

1. Снижение желчеобразования в результате недостаточного синтеза желчных кислот и фосфолипидов при болезнях печени, гиповитаминозах.

2. Снижение желчевыделения (обтурационная желтуха, билиарный цирроз, желчнокаменная болезнь). У детей часто причиной может быть перегиб желчного пузыря, который сохраняется и во взрослом состоянии.

3. Снижение переваривания при недостатке панкреатической липазы, который возникает при заболеваниях поджелудочной железы (острый и хронический панкреатит, острый некроз, склероз). Может возникать относительная недостаточность фермента при сниженном выделении желчи.

4. Избыток в пище катионов кальция и магния, которые связывают жирные кислоты, переводят их в нерастворимое состояние и препятствуют их всасыванию. Эти ионы также связывают желчные кислоты, нарушая их работу.

5. Снижение всасывания при повреждении стенки кишечника токсинами, антибиотиками (неомицин, хлортетрациклин).

6. Недостаточность синтеза пищеварительных ферментов и ферментов ресинтеза липидов в энтероцитах при белковой и витаминной недостаточности.

Нарушение желчевыделения

Нарушение желчеобразования и желчевыделения чаще всего связаны с хроническим избытком ХС в организме вообще и в желчи в частности, так как желчь является единственным способом его выведения.

Избыток ХС в печени возникает при увеличении количества исходного материала для его синтеза (ацетил-S#КоА) и при недостаточном синтезе желчных кислот из-за снижения активности 7α-гидроксилазы (гиповитаминозы С и РР).

Нарушение желчеобразования

Причины нарушения формирования желчи и возникновения холелитиаза

Избыток ХС в желчи может быть абсолютным в результате избыточного синтеза и потребления или относительным. Так как соотношение желчных кислот, фосфолипидов и холестерола должно составлять 65:12:5, то относительный избыток возникает при недостаточном синтезе желчных кислот (гиповитаминозы С, В3, В5) и/или фосфатидилхолина (недостаток полиненасыщенных жирных кислот, витаминов В6, В9, В12). В результате нарушения соотношения образуется желчь, из которой холестерол, как плохо растворимое соединение, кристаллизуется. Далее к кристаллам присоединяются ионы кальция и билирубин, что сопровождается образованием желчных камней.

Застой в желчном пузыре, возникающий при неправильном питании, приводит к сгущению желчи из-за реабсорбции воды. Недостаток потребления воды или длительный прием мочегонных средств (лекарства, кофеин-содержащие напитки, этанол) существенно усугубляет эту проблему.

У детей свои причуды

Особенности переваривания жира у детей

У младенцев клетками слизистой корня языка и глотки (железы Эбнера) при сосании секретируется лингвальная липаза, продолжающая свое действие и в желудке.

У грудных младенцев и детей младшего возраста липаза желудка более активна, чем у взрослых, так как кислотность в желудке детей около 5,0. Помогает и то, что жиры молока эмульгированы. Жиры у младенцев дополнительно перевариваются за счет липазы, содержащейся в женском молоке, в коровьем молоке липаза отсутствует. Благодаря таким преимуществам у детей грудного возраста в желудке происходит 25-50% всего липолиза.

В двенадцатиперстной кишке гидролиз жира дополнительно осуществляется панкреатической липазой. До 7 лет активность панкреатической липазы невысока, что ограничивает способности ребенка к перевариванию пищевого жира, ее активность достигает максимума только к 8-9 годам. Но, тем не менее, это не мешает ребенку уже в первые месяцы жизни гидролизовать почти 100% пищевого жира и иметь 95% всасывания.

В грудном возрасте содержание желчных кислот в желчи увеличивается примерно в три раза, позднее этот процесс замедляется.

Переваривание жиров - ферментативный гидролиз, который происходит вдвенадцатиперстной кишке и тонком кишечнике под влиянием ферментов, содержащихся в соке поджелудочной железы и соке кишечных желез. Желчь необходима для переваривания жиров, так как она содержит детергенты (желчные кислоты), которые эмульгируют жиры, облегчая доступ к ним ферментов. Продукты пищеварительного гидролиза - глицерин и жирные кислоты (в комплексе с желчными кислотами), из полости кишечника поступают в клетки его слизистой. В клетках слизистой кишечника из продуктов гидролиза вновь ресинтезируется жир и образуются особые частицы - хиломикроны, которые поступают в лимфу. Откуда они, пройдя сквозь лимфатические сосуды, через грудной лимфатический проток попадают в кровь. Только небольшая часть образовавшихся при гидролизе жирных кислот с относительно короткой углеродной цепочкой (в основном, это продукты гидролиза жиров молока) могут всасываться и поступать в кровь воротной вены, а оттуда - в печень.
Роль печени в обмене жиров

Печень играет очень важную роль в прессах мобилизации, переработке и биосинтеза жиров. Из пищеварительного тракта только жирные кислоты с короткой цепью (в комплексе с желчными кислотами) поступают в печень с кровью по воротной вене. Эти жирные кислоты окисляются при участии ферментных систем печени и не участвуют в процессах биосинтеза жиров. У взрослых людей они, по-видимому, не играют особой роли в обмене веществ. Исключение составляют дети, в пищевом рационе которых преобладают жиры молока. Остальные липиды поступают в печень с кровью, притекающей по печеночной артерии в составе комплексов - хиломикронов или липопротеидов. В печени, как и в других тканях, идут процессы окисления жирных кислот. Несмотря на свои важные функции, жиры - это заменяемые вещества, так как в организме жирные кислоты, кроме нескольких незаменимых ненасыщенных, синтезируются заново. Суммарный процесс синтеза жирных кислот называется липогенез, и печень занимает одно из первых мест среди других органов по интенсивности этого процесса.

В печени происходят ферментативные процессы превращения холестерина и фосфолипидов. Биосинтез фосфолипидов в печени обеспечивает обновление структурных компонентов ее клеточных мембран. Другие фосфолипиды, синтезированные в печени, поступают в кровь и становятся достоянием тканей.

в тканях:

В тканях жиры расщепляются под действием различных липаз, а образовавшиеся жирные кислоты входят в состав других соединений (фосфопипиды, эфиры холестерина и т. д.) или окисляются до конечных продуктов. Окисление жирных кислот совершается несколькими путями. Часть жирных кислот при окислении в печени дает ацетон. При тяжелом сахарном диабете, литюидном нефрозе и других заболеваниях количество ацетоновых тел в крови резко увеличивается.


Ресинтез липидов – это синтез липидов в стенке кишечника из поступающих сюда экзогенных жиров, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволит переносить по крови в ткани.

Ресинтез липидов внутри эпителиальных клеток кишечника. Из моно- ацилглицеролов и жирных кислот в эпителиальных клетках вновь синтезиру­ются триацилглицеролы. Наиболее простой путь синтеза липидов, так назы­ваемый p-моноглицеридный путь, включает две последовательные реакции

этерификации Р(2)-моноацилглицерола активированными жирными кислота* ми в форме ацил-КоА по схеме:

Эти реакции катализируются специфическими ферментами ацилтранф* разами: моноглицеридацилтрансферазой и диглщкридацилтрансферазой соот­ветственно.

Другой путь синтеза липидов - а-глицерофосфатный, аналогичен про­цессу синтеза триацилглицеролов в других тканях. Он будет рассмотрен в раз­деле, посвященном внутриклеточному метаболизму липидов

О процессе переваривания и всасывания пищи

Ключ к пониманию обмена веществ

Переваривание это совокупность механических и биохимических процессов, благодаря которым поглощаемая человеком пища преобразуется в вещества, которые могут быть усвоены организмом.

После того, как пища пережевана и проглочена, она попадает в желудок, где подвергается различным видоизменениям, позволяющим дальнейшее всасывание.

Процесс пищеварения продолжается в тонком кишечнике под воздействием различных пищевых ферментов. Там происходит превращение углеводов в глюкозу , расщепление липидов на жирные кислоты и моноглицериды, а белков – на аминокислоты.

Эти вещества, всасываясь через стенки кишечника, попадают в кровь.

Между тем, несмотря на некоторые общепринятые взгляды, всасывание этих макронутриентов отнюдь не длится часами и не растягивается на все шесть с половиной метров тонкой кишки. Очень важно знать, что усвоение углеводов и липидов на 80%, а белков – на 50% — осуществляется на протяжении первых 70-ти сантиметров тонкого кишечника.

Некоторые полагают, что углеводы, жиры и белки всегда усваиваются полностью. Многие пациенты думают – и диетологи им в этом не препятствуют — что абсолютно все присутствующие на их тарелке (и, конечно, подсчитанные) калории поступят в кровь сразу после расщепления соответствующей пищи. На самом деле, все обстоит иначе.

Всасывание углеводов

Расщепление углеводов осуществляется под действием пищеварительных ферментов, в особенности амилаз слюнной и поджелудочной желез. А гидролиз углеводов, то есть превращение в усваиваемую организмом глюкозу, напрямую зависит от их гликемического индекса.

Гликемический индекс углевода определяет способность углевода повышать гликемию, то есть количество глюкозы в крови. Другими словами, ГИ выражает способность углевода к гидролизу, то есть расщеплению до глюкозы.

Итак, гликемический индекс (ГИ) измеряет долю глюкозы, которая будет получена из данного углевода в процессе его переработки организмом и, следовательно, попадет в кровь.

Если гликемический индекс (ГИ) глюкозы равен 100, это значит, что при попадании в тонкую кишку она всосется через стенки кишечника на 100 %.

Если ГИ белого хлеба равен 70, это означает, что содержащийся в нём углевод (крахмал) на 70% гидролизуется и пройдет через стенки кишечника в форме глюкозы.

По этому же принципу, если ГИ чечевицы равен 30, то можно полагать, что содержащийся в ней крахмал лишь на 30% будет усвоен организмом в виде глюкозы.

Таким образом, при равном калорийном показателе поглощаемых нами углеводов, количество полученной при их расщеплении и поступающей в кровь глюкозы может значительно варьироваться, в зависимости от ГИ углевода.

Другими словами, гликемический индекс содержащего углеводы продукта выражает его глюкозную биодоступность.

Для облегчения понимания этого феномена раскроем его, используя термин традиционной диетологии, то есть «калории».

Из этой таблицы видно, что после усвоения жареного картофеля в организме высвобождается в три раза больше калорий, чем после усвоения чечевицы, при равных порциях углеводов.

И наоборот, при равных порциях, чечевица после расщеплении высвобождает в три раза меньше «калорий», чем картофель.

Кроме того, опытным путем было выявлено, что употребление сахара (в разумных пределах) в конце приёма пищи если и влияет на гликемический результат приёма пищи, то очень незначительно. Всасывание сахара (ГИ 70) будет снижено в зависимости от того, насколько разнообразна была пища и какое количество пищевых волокон и протеинов она содержала. Совсем по-другому дело обстоит, если сахар поступает в организм натощак, например, в виде сладких газированных напитков (кока-кола). В этом случае углевод всасывается почти полностью.

Этот момент чрезвычайно важен!

Он является одним из основных принципов Метода Монтиньяка и позволяет понять, как можно снизить вес, не уменьшая при этом количества потребляемой пищи, а лишь научившись правильно выбирать продукты.

Этот пункт важен ещё и потому, что заставляет пересмотреть слепое и наивное убеждение традиционной диетологии в том, что все калории, поглощаемые нами, полностью усваиваются организмом.

Многие нутриционисты, пользующиеся понятием гликемического индекса, ошибаются, полагая, что ГИ выражает лишь величину пика гликемии. Так что вся польза продукта с низким ГИ сводится, в их понимании, к тому, что он помогает избежать резкого повышения уровня сахара в крови, замедляя всасывание глюкозы. Таким образом, принцип гликемического индекса углеводов ошибочно связывается с понятием о «медленных» и «быстрых сахарах», которое многие авторы, в частности, профессор Ж. Слама, считают неверным.

Согласно объяснению Дженкинса, приведенному более подробно в специальном разделе сайта, гликемический индекс углеводного продукта соответствует площади треугольника, который образует на графике кривая гипергликемии, возникшей в результате поступления сахара. Другими словами, ГИ углевода выражает количество глюкозы, вырабатывающейся при его расщеплении и поступающей в кровь через стенки кишечника. Чем ниже , тем меньше глюкозы высвободится в кровь при его переваривании.

В заключение скажем, что гликемический индекс углеводного продукта, помимо гликемии, измеряет степень всасываемости углевода, то есть его биодоступность. Так что повышение уровня гликемии лишь свидетельствует о той доле углевода, которая поступила в кровь человека в виде глюкозы после переваривания продукта.

Всасывание липидов (жиров)

Тема липидов традиционно нелюбима диетологами. Отвращение к жирам вызвано тем, что они высококалорийны: 9 килокалорий на грамм.

Несмотря на укоренившиеся стереотипы, не все жиры, попадающие к нам в тарелку, полностью усваиваются в процессе пищеварения. Всасывание их зависит от нижеперечисленных параметров.

На усвоение влияет их происхождение и химический состав:

Насыщенные жирные кислоты (сливочное масло, говяжий жир, баранина, свинина, пальмовое масло…), а также транс-жиры (гидрогенезированный маргарин…) имеют тенденцию откладываться в жировые запасы, а не сразу сжигаться в процессе энергетического обмена.

Мононенасыщенные жирные кислоты (оливковое масло, жир утки или гуся) преимущественно используются непосредственно после всасывания. Кроме того, они способствуют снижению гликемии, что уменьшает выработку инсулина и тем самым ограничивает формирование жировых запасов.

Полиненасыщенные жирные кислоты, в особенности Омега-3 (рыбий жир, репсовое масло, льняное масло…), всегда расходуются непосредственно после всасывания, в частности, за счёт повышения пищевого термогенеза — энергозатрат организма на переваривание пищи.

Кроме того, они стимулируют липолиз, (расщепление и сжигание жировых отложений), способствуя тем самым похудению.

Следовательно, при равном калорийном составе разные типы жирных кислот имеют разное, иногда даже противоположное, влияние на метаболизм.

Всасывание жиров зависит от расположения жирных кислот относительно молекулы глицерина:

95 – 98% поглощаемых с пищей жиров имеют структуру триглицеридов. Их ежедневная норма для человека в среднем составляет 100 – 150 гр.

С точки зрения химии, триглицериды представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот . Различают три возможных варианта расположения жирных кислот относительно молекулы глицерина.

Доля всасывания жирной кислоты зависит от того, какую позицию она занимает. Важно знать, что только те жирные кислоты, которые занимают позицию Р2, хорошо всасываются..

Это связано с тем, что пищевые ферменты, расщепляющие липиды (липазы), имеют разную степень воздействия на жирные кислоты в зависимости от расположения последних.

Это означает, что не все поступившие с кислоты полностью всасываются в организме, как ошибочно полагают многие диетологи. Они могут частично или полностью не усвоиться в тонком кишечнике и быть выведены из организма.

Например, в сливочном масле, 80% жирных кислот (насыщенных) находятся в позиции Р2, то есть они полностью всасываемы. Это же относится к жирам, входящим в состав молока и всех не проходящих процесс ферментации молочных продуктов.

С другой стороны, жирные кислоты присутствующие в зрелых сырах (особенно сырах длительной выдержки), хоть и являются насыщенными, находятся все же в позициях Р1 и Р3, что делает их менее абсорбируемыми.

Кроме того, в большинстве своём сыры богаты кальцием (особенно твердые сыры, например, швейцарский грюйер…). Кальций соединяется с жирными кислотами, образуя «мыла», которые не всасываются и выводятся из организма.

Из вышесказанного можно заключить, что степень усвоения организмом жирных кислот , входящих в состав молочных продуктов, обусловливается химическими факторами этих продуктов (ферментация, содержание кальция…). От этих факторов зависит не только количество высвобождающейся при переваривании энергии, но и степень риска для сердечно-сосудистой системы.

Такое наблюдение было подтверждено специализированными исследованиями, выявившими взаимосвязь между употреблением в пищу молочных продуктов , не проходящих ферментацию (молоко, сливочное масло, сливки…), и возникновением коронарных болезней.

Было также установлено, что при количественно равном употреблении в пищу молочных продуктов , прошедших ферментацию (сыров), риск развития сердечно-сосудистых заболеваний неодинаков от страны к стране.

Довольно интересно сравнение между жителями Финляндии и Швейцарии. Было отмечено, что смертность от сердечно-сосудистых недугов в Швейцарии в два раза ниже, чем в Финляндии, при примерно равном потреблении молочных продуктов на человека.

Одним из основных объяснений этого является то, что швейцарцы, в отличие от финнов, потребляют большую часть молочных продуктов в виде ферментированных сыров.

Ещё более поразительно сравнение между Финляндией и Францией.

При том, что французы едят в два раза больше молочных продуктов, уровень смертности от сердечно-сосудистых заболеваний во Франции в два с половиной раза ниже.

Этому есть несколько объяснений, одно из которых следующее: французы едят сыры, которые не просто ферментированы, а ещё и выдержаны.

Вызревание сыра способствует переходу входящих в него жирных кислот в положение P1 и P3, что свидетельствует о слабой их всасываемости.

На абсорбцию липидов также влияет количество пищевых волокон.

Присутствие в пище одновременно с жирами пищевых волокон, в частности, растворимых, влияет на усвоение жирных кислот . Например, употребление яблок, богатых пектином, и бобовых, источника камеди, может понизить гиперхолестеринемию, а также содействовать профилактике лишнего веса, уменьшая количество усваиваемых организмом калорий.

Всасывание протеинов

Различные параметры оказывают влияние на абсорбцию белков:

Происхождение белка

Животные белки почти на 100% всасываются в кишечнике. Таким образом, они полностью высвобождаются для использования организмом.

Процент же всасывания растительных белков, за исключением сои, намного ниже:

— чечевица — 52%

— турецкий горох (нут) — 70%

— пшеница — 36%

Состав белка

Известно, что протеины состоят из разных аминокислот. Недостаток одной или нескольких аминокислот может стать ограничивающим фактором, препятствующим правильному использованию остальных.

Так что иногда поглощенные белки после всасывания оказываются либо неработоспособными, либо имеют слабую активность, не соответствующую их количеству.

Заключение: питательные вещества, поступающие с пищей, не обладают полной стопроцентной усвояемостью. Степень их всасывания может существенно меняться, в зависимости от физико-химического состава самого продукта и поглощаемых одновременно с ним других продуктов.

Важно учитывать это, предпринимая меры по снижению веса или профилактике сердечно-сосудистых заболеваний.

Главная особенность переваривания жиров в раннем детском возрасте заключается в том, что примерно половина жиров расщепляется в желудке. Данная особенность обусловлена следующими обстоятельствами:

  • 1. жиры молока находится в эмульгированном состоянии
  • 2. при грудном вскармливании в переваривании жиров участвует липаза грудного молока
  • 3. в процессе сосания у грудного ребёнка вырабатывается лингвальная липаза, которая оказывает эффект в желудке
  • 4. активно вырабатывается желудочная липаза с оптимумом рН около 5,0
  • 5. у детей в желудке менее кислая среда, приближенная к оптимуму рН для липаз
  • 6. активность панкреатической липазы у детей снижена
  • 7. в детском возрасте менее активен синтез жёлчных кислот, повышена их потеря через кишечник и замедлена циркуляция.

Всасывание жиров у детей происходит с большей скоростью, чем у взрослых в связи с высокой проницаемостью слизистой кишечника.

Транспорт жиров кровью

Гидрофобные жиры не могут транспортироваться кровью самостоятельно. Они переносятся в следующих формах:

  • 1. липопротеиды (липопротеины) - белково-липидные комплексы
  • 2. хиломикроны - жировые капли, образующиеся в млечном соке
  • 3. свободные жирные кислоты транспортируются в комплекте с альбуминами

Хиломикроны - это мельчайшие капельки жира с размерами около 500 нм, плотностью 0,95 г/см 3 , состоящие из 2% белка и 90% ТАГ. Хиломикроны синтезируется в слизистой кишечника, считаются транспортной формой пищевых (экзогенных) жиров организме. Хиломикроны попадают сначала в лимфу, а затем разносятся кровью в основном в жировые депо (>50%), а также к печени, лёгким, мышечной ткани.

Липопротеиды (ЛП) являются основной транспортной формой жиров.

По электрофоретической подвижности различают: пре в - ЛП, в - ЛП, б - ЛП

По плотности выделяют:

  • - ЛП очень низкой плотности (ЛПОНП)
  • - ЛП низкой плотности (ЛПНП)
  • - ЛП высокой плотности (ЛПВП)
  • - ЛП промежуточной плотности
  • - ЛП очень высокой плотности

Все ЛП построены по общему принципу. В центре частицы находится гидрофобное ядро, в которое входят ТАГ и эфиры холестерина, вокруг него формируется гидрофильная оболочка, в которую входят ФЛ, холестерин. На поверхности располагаются белки - апопопротеины (АроPt).

Различают несколько видов АроPt: A, B, C, E. Они формируют структуру липопротеидных частиц, взаимодействуют с тканевыми рецепторами к ЛП, являются активаторами ферментов обмена ЛП

ЛП осуществляют транспорт липидов, жирорастворимых витаминов и гидрофобных гормонов.

Закономерности строения липопротеидов в ряду: ЛПОНП >ЛПНП>ЛПВП представлены в таблице.

Таблица 1

ЛПОНП - синтезируется в печени, считаются основной транспортной формой эндогенных жиров. В эндотелии сосудов ЛПОНП и хиломикроны подвергаются действию фермента липопротеидной липазы, которая расщепляет в их составе ТАГ. В результате в составе ЛП повышается доля холестерина, и ЛПОНП превращаются в ЛПНП.

ЛПНП считаются транспортной формой холестерина от печени к органам и тканям. В тканях имеются рецепторы и ЛПНП, при участии которых происходит поглощение холестерина с последующим использованием его на построение мембран, синтез стероидов, депонированием в виде эфиров.

ЛПВП синтезируется в печени в виде дисковидных структур. Они считается транспортной формой холестерина из тканей к печени. В кровотоке при контакте с эндотелием происходит поглощение холестерина ЛПВП. Они постепенно превращаются в сферические структуры и переносят холестерин в печень. В поглощении холестерина частицами ЛПВП участвует фермент ЛХАТ (лицитинхолестеролацилтрансфераза), который в составе ЛПВП переносит остатки жирных кислот с фосфолипидов на холестерин с образованием эфиров холестерина. Эфиры холестерина более гидрофобны по сравнению со свободным холестерином и, в силу этого, погружаются внутрь ЛП частицы.

У детей общее содержание ЛП ниже, чем у взрослых. В детском возрасте снижена концентрация хиломикронов и ЛПОНП, повышено содержание ЛПВП, в которых повышено содержание гидрофильных компонентов.

Таблица 2

Большая часть переносимых кровью липидов откладывается в жировых депо, к которым относятся подкожно-жировая клетчатка, большой и малый сальники. У детей наиболее активно депонирование жиров происходит в возрасте 1 года, 7 лет и в пубертатном периоде. В раннем детском возрасте у детей важным видом жировой ткани является бурая жировая ткань. Она локализована в основном на спине, на груди, имеет бурый оттенок, который обусловлен большим содержанием митохондрий и Fе - содержащих цитохромов. В бурой жировой ткани происходит нефосфолирирующее окисление жиров, которое сопровождается выделением тепловой энергии (она является органом термогенеза). Жировое депо у детей легко истощается при нарушении питания, болезнях, стрессе. Липиды в жировых депо постоянно обновляются.

Обмен триацилглицеринов

Распад триацилглицеринов в тканях (липолиз)

Триацилглицерины поэтапно расщепляется тканевыми липазами.

Ключевым ферментом липолиза является гормональнозависимая ТАГ-липаза. Образующиеся на этом этапе распада жиров глицерин и жирные кислоты окисляются в тканях с образованием энергии.

Окисление жирных кислот.

Различают несколько вариантов окисления жирных кислот: б - окисление, в - окисление, щ - окисление. Основным вариантом окисления жирных кислот является в - окисление. Оно наиболее активно протекает в жировой ткани, печени, почках и сердечной мышце.

В - окисление заключается в постепенном отщеплении от жирной кислоты двух углеродных атомов в виде ацетил - КоА с освобождением энергии. Запас жирных кислот сосредоточен в цитозоле, где протекает активация жирных кислот с образованием ацил - КоА


Последующее в-окисление ацил-КоА происходит в митохондриях. Митохондриальная мембрана непроницаема для длинноцепочечных ацил - КоА. В переносе их внутрь митохондрий участвует специальный переносчик карнитин (метил, гидропроизводное аминомасляной кислоты). Ацил - КоА образует с карнитином комплекс, который после переноса жирной кислоты внутрь митохондрий распадается.

Химизм в - окисления насыщенных жирных кислот

Энергетическая эффективность бета - окисления жирных кислот складывается из энергии окисления ацетил - КоА в цикле Кребса и энергии, освобождающейся в самом бета - цикле. Энергия окисления жирной кислоты тем выше, чем длиннее её углеродная цепь. Количество молекул ацетил - КоА из данной жирной кислоты и количество образующихся из них молекул АТФ определяется по формулам:

где n - количество молекул ацетил - КоА,

N - число атомов углерода в жирной кислоте.

Количество молекул АТФ за счёт окисления молекул ацетил-КоА = (N/2)*12

Число в - циклов окисления на один меньше, чем количество образующихся молекул ацетил-КоА, поскольку в последнем цикле масляная кислота за один цикл переходит в две молекулы ацетил-КоА, и рассчитывается по формуле

Количество в - циклов = (N/2)-1

Количество молекул АТФ в в - цикле рассчитывается, исходя из последующего окисления образовавшихся в нём НАДН 2 (3 АТФ) и ФАДН 2 (2 АТФ) по формуле

Количество молекул АТФ, образующихся в бета-циклах = ((N/2)-1)*5

2 макроэргические связи АТФ расходуются на активацию жирной кислоты

Суммарная формула для подсчёта выхода АТФ при окислении насыщенной жирной кислоты имеет вид: 17(N/2)-7.

При окислении жирных кислот с нечётным числом углеродных атомов образуется сукцинил - КоА, который вступает в цикл Кребса.

Окисление ненасыщенных жирных кислот на начальных стадиях представляет обычное бета - окисление до места двойной связи. Если эта двойная связь находится в бета - положении, то продолжается окисление жирной кислоты со второго этапа (минуя стадию восстановления ФАД> ФАДН 2). Если двойная связь находится не бета - положении, то ферментами еноилтрансферазами связь перемещается в бета - положение. Таким образом, при окислении ненасыщенных жирных кислот образуется меньше энергии по формуле (теряется образование ФАДН2):

где m-число двойных связей.

Всасыванием называется процесс поступления в кровь и лимфу различных веществ из пищеварительной системы . Кишечный эпителий является важнейшим барьером между внешней средой, роль которой выполняет полость кишечника, и внутренней средой организма (кровь, лимфа), куда поступают питательные вещества.
Всасывание представляет собой сложный процесс и обеспечивается различными механизмами: фильтрацией , связанной с разностью гидростатического давления в средах, разделенных полупроницаемой мембраной; диффузией веществ по градиенту концентрации и осмосом , требующим затрат энергии, поскольку он происходит против градиента концентрации. Количество всасывающихся веществ не зависит от потребностей организма (за исключением меди и железа), они пропорционально потреблению пищи. Кроме того, оболочка органов пищеварения обладает способностью избирательно всасывать одни вещества и ограничивать всасывание других. Способностью к всасыванию обладает эпителий слизистых оболочек всего пищеварительного тракта. Например, слизистая полости рта может всасывать в небольшом количестве эфирные масла, на чем основано применение некоторых лекарств. В незначительной степени способна к всасыванию и слизистая оболочка желудка. Вода, алкоголь, моносахариды, минеральные соли могут проходить через слизистую желудка в обоих направлениях.
Наиболее интенсивно процесс всасывания осуществляется в тонком кишечнике, особенно в тощей и подвздошной кишке, что определяется их большой поверхностью, во много раз превышающей поверхность тела человека. Поверхность кишечника увеличивается наличием ворсинок, внутри которых находятся гладкие мышечные волокна и хорошо развитая кровеносная и лимфатическая система. Интенсивность всасывания в тонком кишечнике составляет 2-3 литра в час.
Углеводы всасываются в кровь в виде глюкозы , хотя могут всасываться и другие гексозы (галактоза, фруктоза). Всасывание происходит преимущественно в 12-перстной кишке и верхней части тощей кишки, но частично может осуществляться в желудке и толстом кишечнике (см. рис. Переваривание и всасывание углеводов).

Белки всасываются в кровь в виде аминокислот и в небольшом количестве в виде полипептидов через слизистые оболочки 12-перстной кишки и тощей кишки. Некоторые аминокислоты могут всасываться в желудке и проксимальной части толстого кишечника (см.рис. Переваривание и всасывание белков).


Жиры всасываются большей частью в лимфу в виде жирных кислот и глицерина только в верхней части тонкого кишечника. Жирные кислоты нерастворимы в воде, поэтому их всасывание, а также всасывание холестерина и других липоидов происходит лишь при наличии желчи.(см.рис Переваривание и всасывание липидов)


Вода и некоторые электролиты проходят через мембраны слизистой оболочки пищеварительного канала в обоих направлениях. Вода проходит путем диффузии, и в ее всасывании большую роль играют гормональные факторы. Наиболее интенсивное всасывание происходит в толстом кишечнике. Растворенные в воде соли натрия, калия и кальция всасываются преимущественно в тонком кишечнике по механизму активного транспорта против градиента концентрации. (см.рис Механизмы всасывания воды).

Loading...Loading...