Химический состав искусственных органов. Искусственные органы и тканевая инженерия. Искусственные органы: человек умеет все

В прошлом году создали эмбрион - помесь свиньи и человека, в этом году - поместили человеческие клетки в эмбрион овцы . Стволовые клетки перепрограммируют в разные другие, делают из кожи сетчатку глаза, мышцы и вообще что угодно, выращивают модели органов на крохотных чипах - зачем все это нужно? Какую пользу такие исследования могут принести обычному пациенту?

Будущее трансплантации

Польза на самом деле огромная. Никто из нас не застрахован от болезней и травм, результатом которых может стать отказ того или иного органа. Люди не саламандры и не черви и даже хвост-то себе отрастить не способны, не говоря уже о новой голове.

Рыбки данио-рерио могут восстановиться после травм сердца, а мы - не они, наша регенерация, увы, заставляет желать лучшего, поэтому для сотен тысяч человек единственный способ сейчас получить работающие сердце, легкие или печень - это пересадка органа от донора.

Реципиентов - сотни тысяч. Доноров - намного меньше, подходящих конкретному человеку - критически мало. Если в случае с почкой донор может быть живым (и, скажем, родственником, таких случаев полно), то с сердцем, например, такого уже не получится. Сотни человек ежедневно умирают только потому, что нужного донора не успели найти. Именно поэтому исследования в области выращивания искусственных органов критически важны.

При чем тут эмбрионы животных?

До выращивания новых органов прямо внутри пациентов науке еще очень и очень далеко, а вот модификация эмбрионов животных уже доступна. Первые живые химеры (так называют организмы, в которых сосуществует генетический материал из разных зигот, а зигота - это то, что получается после встречи половых клеток) показали, что в теле животного вполне могут расти человеческие клетки.

У эмбрионов свиней начали формироваться органы, в том числе сердце и печень. Получается, что при точной настройке вырастить человеческий орган внутри животного реально не только теоретически, но и практически, а теперь выяснилось, что и с овцами такое тоже может получиться. Таким образом, искусственные органы - это вопрос времени.

Правда, довольно отдаленного, потому что пока еще специалисты не разобрались, как дирижировать этим клеточным оркестром, да и этические вопросы, возникающие в процессе таких модификаций, довольно сложны. Специалистам приходится думать не только собственно об органах, но и о том, как удержаться на грани и не сделать свинью или овцу слишком человеком.

Разумеется, это не будет гибрид типа Минотавра (такого просто никто не будет выращивать, дураков нет, а если есть - им быстро настучат по рогам), но сейчас концентрация человеческих клеток в эмбрионах (которых, разумеется, после исследования уничтожили как раз во избежание эксцессов) - одна на 10 тысяч, а надо - 1 на 100 или, может быть, даже больше. В общем, непонятно пока, как настроить тонкую механику, но уже ясно, что это в принципе возможно.

Нынешние биотехнологии позволяют очень многое. Известно, например, что одни специалисты создали потенциально полезную для искусственных органов систему сосудов, «обесклетив» лист шпината . Все растительные клетки вычистили, а оставшуюся основу населили человеческими.

Другие исследователи сделали материал, из которого в будущем возможно будет делать, например, заплатки для сердца после инфаркта: искусственная ткань и сокращаться может, и электричество проводит. Здесь уже, наверное, ничего объяснять не надо - и так понятно, зачем нужна такая заплатка.

Впрочем, не единой трансплантацией будет жив человек. У искусственных органов или даже их мини-версий - полностью функциональных уменьшенных копий - есть и другая важнейшая функция. На них можно проверять действие новых препаратов и моделировать процесс течения заболеваний, не привлекая к исследованиям людей.

Работа в этом направлении ведется колоссальная - например, из крысиных сердец уже умеют делать уменьшенные модели человеческих, очищая их от животных клеток и заселяя, соответственно, клетками Homo sapiens , создавали мини-желудки, мини-легкие, мини-почки и даже модель женской репродуктивной системы, которую после определенной доработки потенциально можно использовать для персонифицированной медицины - заселять ее клетками конкретной пациентки и смотреть, как будут у нее работать лекарства.

Все это звучит довольно футуристично, но вспомните - всего лет 30 назад нельзя было и помыслить о смартфонах и мощных компьютерах, а сейчас? В начале прошлого века не было антибиотиков - сейчас их множество видов. Да что там говорить, люди уже и на пересадку головы замахнулись - правда, пока безуспешно, но раньше это даже представить нельзя было. Так что будущее уже наступает - сегодня.

Ксения Якушина

Фото istockphoto.com

Типы тканей

Эпителиальная ткань

Эпителиальная (покровная) ткань , или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией ).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток – желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Соединительная ткань

<<<назад

Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь – клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань

<<<назад

Костная ткань , образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткань

<<<назад

Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

Жировая ткань

<<<назад

Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани – теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

Мышечная ткань

<<<назад

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения – произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани – гладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Нервная ткань

<<<назад

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны . Аксоны образуют нервные волокна.

Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Теперь всю полученную информацию мы можем объединить в таблицу.
<<<назад

Типы тканей

Группа тканей Виды тканей Строение ткани Местонахождение Функции
Эпителий Плоский Поверхность клеток гладкая. Клетки плотно примыкают друг к другу Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов Покровная, защитная, выделительная (газообмен, выделение мочи)
Железистый Железистые клетки вырабатывают секрет Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)
Мерцательный (реснитчатый) Состоит из клеток с многочисленными волосками(реснички) Дыхательные пути Защитная (реснички задерживают и удаляют частицы пыли)
Соединительная Плотная волокнистая Группы волокнистых, плотно лежащих клеток без межклеточного вещества Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза Покровная, защитная, двигательная
Рыхлая волокнистая Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела
Хрящевая Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин
Костная Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество – неорганические соли и белок оссеин Кости скелета Опорная, двигательная, защитная
Кровь и лимфа Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами – сыворотка и белок фибриноген) Кровеносная система всего организма Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)
Мышечная Поперечно–полосатая Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами Скелетные мышцы, сердечная мышца Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца.Имеет свойства возбудимости и сократимости
Гладкая Одноядерные клетки до 0,5 мм длины с заостренными концами Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже
Нервная Нервные клетки (нейроны) Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре Образуют серое вещество головного и спинного мозга Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости
Короткие отростки нейронов – древовидноветвящиеся дендриты Соединяются с отростками соседних клеток Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела
Нервные волокна – аксоны (нейриты) – длинные выросты нейронов до 1,5 м длины. В органах заканчиваются ветвистыми нервными окончаниями Нервы периферической нервной системы, которые иннервируют все органы тела Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) – к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)

Органы – это части организма, выполняющие определённые функции. Они имеют определенную форму и место расположение.

Строение.

Обычно орган состоит из нескольких видов тканей, но какая – то из них может преобладать: главная ткань желез – эпителиальная, а мускула – мышечная. Так, например, в печени, легких, почках, железах основной, «рабочей» тканью является эпителиальная, в кости – соединительная, в мозге – нервная. Орган имеет свою, только ему свойственную форму и положение в организме. В зависимости от выполняемых функций разным бывает и строение органа.

Органы анатомически и функционально объединяются в системы органов , т. е. в группы органов, связанных друг с другом анатомически, имеющих общий план строения, единство происхождения и выполняющих одну общую функцию.

Функция

В организме человека выделяют следующие системы органов: пищеварительную, покровную, дыхательную, мочевыделительную, половую, нервную, кровеносную, лимфатическую и иммунную . Некоторые органы объединяются по функциональному принципу в аппараты . В аппаратах органы имеют различное строение и происхождение, но их объединяет участие в выполнении общей функции, например, опорно – двигательный, эндокринный аппарат.

В покровную систему входят кожа и слизистые оболочки, выстилающие полость рта, дыхательных путей, органов пищеварения. Покровная система предохраняет организм от высыхания, температурных колебаний, повреждения, проникновения в организм ядовитых в-в и болезнетворных микроорганизмов.

Система опоры и движения включает в себя кости и мышцы. Кости, объединенные в скелет, создают опору для всех частей тела. Кости защищают внутренние органы и совместно с мышцами обеспечивают подвижность тела.

Выделительная система обеспечивает удаление из организма жидких продуктов обмена.

Дыхательная система состоит из целого ряда полостей и трубок и обеспечивает обмен газов между кровью и внешней средой.

Пищеварительная система включает в себя органы, обеспечивающие переваривание пищи и всасывание в кровь питательных в-в.

Функция половой системы – размножение. В её органах формируются половые клетки, а в женских половых органах, кроме того, происходит развитие плода.

Эндокринная система включает в себя целый ряд желёз внутренней секреции, вырабатывающих и выделяющих в кровь биологически активные в-ва (горомоны), участвующие в регуляции функций всех клеток и тканей организма.

Кровеносная система состоит из сердца и сосудов, а циркулирующая в них кровь обеспечивает обмен в-в.

Нервная система объединяет все вышеперечисленные системы, регулирует и согласовывает их деятельность, а посредством рецепторов (органов чувств) осуществляет связь организма с окружающей средой. Психическая деятельность формируется нервной системой. Благодаря деятельности нервной и эндокринной систем организм функционирует как единое целое.

Орган или система органов вне организма функционировать не может, а организм не может функционировать без любой из своих систем.

Это интересно!

Создание искусственных органов и тканей

М.В.Плетников
перевод с английского Science, 1995,
Vol. 270, N 5234, pp. 230-232.

Создание искусственных органов и тканей оформилось в самостоятельную отрасль науки около десяти лет тому назад. Первые достижения этого направления – создание искусственной кожи и хрящевой ткани, образцы которых уже проходят первые клинические испытания в центрах трансплантации. Одно из последних достижений состоит в конструировании хрящевой ткани, способной к активной регенерации.

Это действительно огромный успех, поскольку поврежденная суставная ткань не регенерирует в организме. В клиниках США ежегодно оперируют более 500 тыс. больных с повреждениями суставного хряща, но подобное хирургическое вмешательство лишь на короткое время облегчает боль и улучшает движения в суставе.

В настоящее время предпринимаются попытки выращивания в лабораторных условиях печени. Но печень – сложно устроенный орган, состоящий из разных типов клеток, обеспечивающих очищение крови от токсинов, преобразование поступивших извне питательных веществ в усваиваемую организмом форму и выполняющих целый ряд других функций. Поэтому создание искусственной печени требует гораздо более сложной технологии: все эти разнообразные типы клеток должны быть размещены строго определенным образом, то есть основа, на которой они базируются, должна обладать высокой избирательностью.

Среди органов и тканей, которые в настоящее время интенсивно исследуются с целью их биотехнологического воссоздания, можно отметить также костную ткань, сухожилия, кишечник, сердечные клапаны, костный мозг и трахею. Помимо работ по созданию искусственных органов и тканей человеческого организма ученые продолжают разрабатывать и методы вживления в организм больных диабетом людей клеток, продуцирующих инсулин, а людям, страдающим болезнью Паркинсона, – нервных клеток, синтезирующих нейромедиатор дофамин, что позволит избавить пациентов от ежедневных утомительных инъекций.

Каждая клетка организма выполняет определенную работу и поэтому нуждается в постоянном притоке кислорода и питательных веществ, а также в непрерывном удалении продуктов обмена. Кислород и питательные вещества могут проникать сквозь мембрану клетки только тогда, когда они находятся в растворенном состоянии. Каждую клетку омывает жидкость, которая содержит все необходимое для ее жизнедеятельности. Это – тканевая жидкость . Из него клетки получают O 2 и питательные вещества, а в него отдают углекислый газ и отработанные продукты обмена.

Бесцветная прозрачная тканевая жидкость заполняет в организме промежутки между клетками. Она образуется из жидкой части крови – плазмы, проникающей в межклеточные щели через стенки кровеносных сосудов, и из продуктов обмена, постоянно поступающих из клеток. Ее объем у взрослого человека составляет приблизительно 20 л.

Кровеносные капилляры не подходят к каждой клетке, поэтому питательные вещества и кислород из капилляров по законам диффузии вначале поступают в тканевую жидкость, а из нее поглощаются клетками. Следовательно, через тканевую жидкость осуществляется связь между капиллярами и клетками. Диоксид углерода, вода и другие продукты обмена, образующиеся в клетках, также за счет разности концентраций выделяются из клеток сначала в тканевую жидкость, а потом поступают в капилляры. Кровь из артериальной становится венозной и доставляет продукты распада к почкам, легким, коже, через которые они удаляются из организма.

Питательные вещества поступают в организм через органы пищеварения, а продукты распада выводятся из него через органы выделения. Связь между этими органами и клетками тела осуществляется через внутреннюю среду организма, которая состоит из крови, тканевой жидкости и лимфы.

1–клетки крови, 2–капилляр, 3–клетки тканей, 4–тканевая жидкость,
5–начало лимфатических капилляров

Кислород и питательные вещества поступают в межклеточное вещество из крови, циркулирующей по замкнутой системе кровеносных сосудов. Мельчайшие кровеносные сосуды – капилляры пронизывают все ткани организма. Через стенки капилляров в межклеточное вещ – во постоянно поступают содержащиеся в крови различные химические соединения и вода и поглощаются продукты обмена, выделяемые клетками.

В межклетниках слепо начинаются лимфатические капилляры, в них поступает тканевая жидкость, которая в лимфатических сосудах становится лимфой. Цвет лимфы желтовато–соломенный. Она на 95% состоит из воды, содержит белки, минеральные соли, жиры, глюкозу, а также лимфоциты (разновидность лейкоцитов). Состав лимфы напоминает состав плазмы , но белков здесь меньше, и в разных участках тела – она имеет свои особенности. Например, в области кишечника в ней много жировых капель, что придает ей беловатый цвет.

В середине двадцатого века в создание искусственных органов вряд ли кто мог поверить всерьёз, это было что-то из разряда фантастики. В наши дни в обозначенном направлении органов ведутся активные исследовательские работы, результаты которых мы уже можем наблюдать, однако остаётся и множество проблем, связанных с технической сложностью реализации данной идеи. Рассмотрим проблематику на примере создания искусственного сердца.

Одна из основных задач состоит в том, чтобы получить трехмерную ткань стенки сердца толщиной в палец или два. Получать монослои клеток и выращивать такие ткани мы уже можем. Проблема же в том, чтобы одновременно с мышечной тканью вырастить и сосудистое русло, через которое эта мышечная ткань будет снабжаться кислородом и питательными веществами и будут выводиться продукты метаболизма. Без сосудистого русла, без адекватного снабжения клетки в толстом слое погибнут. В тонком слое они могут питаться благодаря диффузии питательных веществ и кислорода, а в толстом слое диффузии уже недостаточно, и глубокие слои клеток будут погибать. Сейчас мы можем делать порядка трех слоев сердечных клеток, которые способны выжить.

Говоря о перспективных имплантатах, нужно помнить, что сосудистое русло имплантата необходимо будет подключить к сосудистому руслу, которое уже имеется в другой части сердца реципиента, то есть нужно вырастить сосудистое русло определенной анатомии. Выращивание целого сердца с множеством его отделов, клеток и собственной проводящей системой - это очень сложная многоклеточная задача. Точная копия человеческого сердца может быть получена приблизительно через 7–10 лет в хорошо оснащенных лабораториях развитых стран. Сердце - это не железа, которая вырабатывает гормоны, это насос. Нам нужно, чтобы кровь прокачивалась и не травмировалась при прокачке. Травмирование крови - это как раз проблема внешних насосов, которые используются при операциях на сердце. Когда их только разрабатывали, основной трудностью было то, что эритроциты и другие элементы крови этими насосами повреждались.

Современное развитие материалов может привести к тому, что будет создано механическое сердце, которое можно будет подшить, чтобы оно спокойно выполняло функции биологического сердца, которое дает человеку природа.

Если в целом говорить об импортируемых системах, то сердце здесь не самый удобный объект. Разумнее продвигать эксперименты на печеночных или почечных тканях. Например, полоски печени легко выживают сами по себе и относительно легко прирастают. Дать человеку, у которого печень поражена циррозом, новую часть печени, которая могла бы начать регенерировать и расти сама по себе, - это гораздо более разумное приложение сил.


В перспективе 5–10 лет станет понятно, стоит ли тратить время и силы на то, чтобы выращивать новое сердце, или проще будет поставить человеку механическое сердце, примеры успешного применения которого уже есть на данный момент.

Проблема с существующими вариантами искусственного сердца заключается в том, что для выполнения аналогичной работы они должны биться 100 тыс. раз в день и 35 млн. раз в год, поэтому быстро изнашиваются. Если бы речь шла о машине, то вопрос можно было бы легко решить – поменять масло и свечи зажигания, но в случае с сердцем все не так просто.

Уникальность нового устройства, примененного докторами из Техасского института сердца (Texas Heart Institute in Houston) как раз в том, что оно непрерывно гонит кровь и человеческий пульс прощупывается. Оно помогает справиться с образованием тромбов и кровотечением, предоставляет больше возможностей людям с тяжелой стадией сердечной недостаточности, которые ранее имели только два варианта: искусственное сердце или длительное ожидание в очереди на трансплантацию органа. Полученный аппарат предлагает третий вариант для больных с острой сердечной недостаточностью.

Для оценки прогресса в разработке и применениях искусственных органов можно обратиться также к опыту западных учёных и медиков.

Ученым из Западного резервного университета Кейза (Case Western Reserve University) удалось создать искусственное легкое, которое, в отличие от других подобных систем, использует воздух, а не чистый кислород. Прибор полностью копирует дыхательный орган. В его конструкцию включены аналоги кровеносных сосудов, выполненные из дышащей силиконовой резины. Подобно настоящим сосудам, они разветвляются и имеют разный размер: диаметр самых тонких из них составляет примерно четверть толщины человеческого волоса.

Хирурги Каролинского университета (Karolinska University Hospital) в Стокгольме впервые в мире провели операцию по трансплантации синтетической трахеи, созданной из стволовых клеток самого пациента. Данная технология позволяет обойтись без донора и избежать риска отторжения тканей, а изготовление органа достаточно быстрое и занимает от двух дней до недели.

Post Views: 36


Одно из важных направлений современной медицины – создание искусственных органов. Искусственные органы – это созданные человеком органы-имплантанты, которые могут заменить настоящие органы тела. Несмотря на то что практически все экспериментальные «модели» находятся в разработке, похоже, что вскоре ученые создадут настоящего человека из искусственных органов.

Искусственная матка. Стадия разработки: успешно созданные прототипы Ученые уже давно работают над созданием искусственной матки, чтобы эмбрионы могли развиваться вне женских репродуктивных органов. Прототипы создавались учеными на основе клеток, выделенных из организма женщины. Специалисты утверждают, что в самое ближайшее время будет создана полноценная искусственная матка.Новая разработка в будущем позволит женщинам, страдающим от бесплодия, иметь детей. Противники новой технологии утверждают, что разработка ученых может в будущем ослабить связь матери и ребенка. Создание искусственной матки также поднимает этические вопросы о возможном клонировании человека и даже о введении запрета на аборты, поскольку эмбрион сможет выжить и в искусственной матке.Искусственный кишечник. Стадия разработки: успешно создан В прошлом году английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения.Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.Искусственное сердце. Стадия разработки: успешно создано, готово к имплантации Первые искусственные сердца появились еще в 60-х годах прошлого века. Однако полноценное, полностью имплантируемое искусственно сердце появилось не так давно. Так называемое «временное» сердце Total Artificial Heart создано специально для пациентов, страдающих от нарушений сердечной деятельности. Этот орган поддерживает работу организма и фактически продлевает жизнь пациенту, который находится в ожидании органа для полноценной трансплантации. Первое «временное сердце» было имплантировано в 2007 году бывшему инструктору по фитнесу.Искусственная кровь. Стадия разработки: кислородная терапия Термин «искусственная кровь» немного неточен. Настоящая кровь выполняет большое количество задач. Искусственная кровь пока может выполнять только некоторые из них Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине.Искусственная кровь выполняет две основные функции: 1) увеличивает объем кровяных телец 2) выполняет функции обогащения кислородом. В то время как вещество, увеличивающее объем кровяных телец, уже давно используется в больницах, кислородная терапия пока находится в стадии разработки и клинических исследований.Несмотря на определенные трудности в исследованиях, ученые утверждают, что уже в самые ближайшие годы будет создана полноценная искусственная кровь. Если это произойдет, то по вкладу в развитие науки это открытие будет сравнимо разве что с возможным полетом человека на Марс.

Искусственные кровеносные сосуды. Стадия разработки: подготовка экспериментов на людях
Ученые недавно разработали искусственные кровеносные сосуды, используя коллаген, выделяемый из шкуры…лосося. Использования коллагена из лосося абсолютно безопасно, поскольку современная наука не знает ни одного вируса, который способен передаваться от лосося человеку (в отличие от коллагена, выделяемого из шкур коров, использование которого было признано небезопасным из-за возможности заражения коровьим бешенством). Пока эксперименты проводятся на животных, однако ученые готовятся к экспериментам на людях. Исследователи уверены, что созданные ими биоматериалы можно будет использовать для замены поврежденных кровеносных сосудов человека.

Искусственные кости. Стадия разработки: проводятся клинические исследования

Ученые довольно давно занимаются проблемой создания искусственных костей. Недавно было обнаружено, что лимонная кислота в сочетание с октандиолом (нетоксичным химикатом) создает вещество желтого цвета, похожее на резину, которому можно придать любую форму и заменить им поврежденную часть кости. Полученный полимер, смешанный с гидроапатитовым порошком, в свою очередь «превращается» в очень твердый материал, который можно использовать для восстановления сломанных костей.Технология, вне всяких сомнений, является весьма перспективной, однако ученым ее предстоит стадия экспериментов на людях.Искусственная кожа. Стадия разработки: исследователи на пороге создания настоящей кожи Созданная в 1996 году искусственная кожа используется для пересадки пациентам, чей кожных покров был сильно поврежден сильными ожогами. Метод состоит в связывании коллагена, полученного из хрящей животных, с гликозаминогликаном (ГАГ) для развития модели внеклеточной матрицы, которая создает основание для новой кожи. В 2001 году на основе этого метода была создана самовосстанавливающаяся искусственная кожа.Еще одним прорывом в области создания искусственной кожи стала разработка английских ученых, которые открыли удивительный метод регенерации кожи. Созданные в лабораторных условиях клетки, генерирующие коллаген, воспроизводят реальные клетки человеческого организма, которые не дают коже стареть. С возрастом количество этих клеток уменьшается, и кожа начинает покрываться морщинами. Искусственные клетки, введенные непосредственно в морщины, начинают вырабатывать коллаген и кожа начинает восстанавливаться.
Искусственная сетчатка. Стадия разработки: создана и успешно прошла тестирования, находится на стадии промышленного производства Искусственная сетчатка Argus II в скором времени будет лечить людей, страдающих от различных форм слепоты, таких как дегенерация желтого пятна и пигментная дегенерация сетчатки. Дегенерация желтого пятна – это атрофия или дегенерация диска зрительного нерва, расположенного вблизи центра сетчатки. Является распространенной причиной потери зрения, особенно среди людей старшего возраста. Различают два типа возрастной дегенерации желтого пятна. Сухая форма характеризуется пигментной дистрофией эпителия и чаще всего приводит к медленно прогрессирующей частичной потере зрения. Влажная форма быстро прогрессирует и приводит к слепоте. Пигментная дегенерация сетчатки – редкое наследственное заболевание, связанное с нарушением работы и выживанием палочек, фоторецепторов сетчатки, отвечающих за периферическое черно-белое сумеречное зрение. Колбочки – другой вид фоторецепторов, отвечающих за центральное дневное цветное зрение. Колбочки вовлекаются в дегенеративный процесс вторично. Признаками пигментной дегенерации сетчатки являются: плохое зрение в сумерках на оба глаза, частые спотыкания и столкновения с окружающими объектами в условиях пониженной освещенности, постепенное сужение периферического поля зрения, быстрая утомляемость глаз.
Искусственные конечности. Стадия разработки: эксперименты Как известно, саламандры могут регенерировать оторванные конечности. Почему бы людям не последовать их примеру? Недавно проведенные исследования подарили людям с ампутированными конечностями надежду на возможную регенерацию утраченных частей тела. Ученые успешно вырастили новые конечности на саламандре, используя экстракт из мочевого пузыря свиньи. Исследователи находятся на самой ранней стадии развития новой технологии, которая только будет разработана – до ее применения на людях еще далеко.
Искусственные органы, созданные из стволовых клеток. Стадия разработки: созданы прототипы, требуются дальнейшие исследования Когда команда английских ученых смогла создать сердечный клапан из стволовых клеток пациента, сразу же начались разговоры о создании искусственного сердца при помощи схожих технологий. Более того, это научное направление признано более перспективным, так как органы, созданные из стволовых клеток пациента, имеют гораздо больше шансов прижиться.Если исследовании ученых увенчаются успехом, то в будущем станет возможным заменить любой орган собственного тела на более молодой, здоровый и…свой собственный. Однако на данный момент ученые далеки от этой футуристической картины. Одним из факторов, ограничивающих исследования, является этический вопрос использования эмбриональных стволовых клеток.


http://irepeater.com/feeds/feed/5888/item/nauka-iskusstvennye-organy_2869831.html

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40‑50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе‑чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из‑за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960‑х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30‑34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из‑за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо‑селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо‑очки, например, разработаны в научно‑внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно‑матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами‑приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое‑какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять‑таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все‑таки будут…»

Loading...Loading...