Классификация костей, особенности их строения. Кость как орган. Кость как орган (строение кости) Система костных пластинок концентрически расположенных вокруг полости

Как видно из названия, наука биохимия стоит на стыке двух важных дисциплин. Одна из них – химия, другая же - биология. И изучает биохимия, соответственно, химический состав живых клеток и организмов. Кроме того, биологическая химия (или химическая биология) исследует различные химические процессы, которые лежат в основе жизнедеятельности абсолютно любого живого существа. Но, в данном случае, наиболее интересным будет строение кости лошади с точки зрения биохимии.

Как и любого позвоночного животного, кости выполняют опорную основу для тела. В комплексе - это костяк или , который участвует в движениях тела животного, а также защищает внутренние органы. С одной стороны, скелет лошадей очень схож со скелетом тех же больших кошек или, например, волков (все эти виды животных, как известно, передвигаются на четырёх конечностях). Но, с другой стороны, лошади кардинально от них отличаются. И не только в физическом плане. Кости скелета лошади ещё и имеют довольно сложный химический состав.

Кости скелета

Абсолютно все кости у лошади состоят из различных соединений. Эти соединения, в свою очередь, подразделяются на органические и неорганические. К первым можно смело отнести белок (по-научному - оссеин), а так же липиды (это - жёлтый костный мозг). Ко вторым, чаще всего, относят воду и различные минеральные соли. Среди них: кальций, калий, натрий, магний, фосфор и другие химические элементы. А если, например, извлечь из организма взрослой особи кость, то можно увидеть, что на половину она состоит из воды, на 22% - из минералов, на 12% - из белка и на 16% из липидов.

По своим свойствам кости у лошадей обладают довольно высокой твёрдостью и прочностью. Во многом это зависит от высокого содержания минералов и других необходимых элементов. Ещё два немаловажных свойства – эластичность и упругость. Оба они напрямую зависят от белка. А вообще, такое сочетание твёрдости и эластичности во многом достигается за счёт специфического сочетания органики и неорганики. И если сравнивать кости лошади с каким-либо материалом, то по упругости и прочности это всё равно, что бронза или медь.

Но не всегда кости у лошадей будут такими твёрдыми и эластичными. Соотношение многих компонентов в составе кости зависит, прежде всего, от возраста лошади, а уже потом от питания и времени года. Например, у молодого животного отношение белка к минералам 1:1. У взрослого животного – 1:2. А у старого 1:7.


Расположение костных отделов

Каждая кость каждой лошади состоит из костной ткани. Сама ткань постоянно и довольно быстро видоизменяется. Кроме всего этого, костная ткань, наверное, единственная во всём организме способна к полной регенерации. Что интересно, в ней могут происходить сразу два противоположных друг другу диаметрально процесса – это процесс восстановления и процесс разрушения. На все эти процессы оказывают сильное влияние различные механические силы, которые имеют место быть в период статики и/или динамики животного.

Сама по себе костная ткань лошади состоит из различных клеток и межклеточного вещества.

Костных клеток выделяют всего несколько видов:

  1. Остеобласты.
  2. Остеоциты.
  3. Остеокласты.

Остеобласты представляют собой самые молодые клетки. Они синтезируют межклеточное вещество.


Остеобласты

Когда оно накапливается, то остеобласты в нём замуровываются и становятся, в последствии остеоцитами. Ещё одна их важная функция – непосредственное участие в процессах отложения кальция всё в том же межклеточном матриксе. Этот процесс называется кальцификацией.

В переводе с греческого языка, слово «остеоциты» обозначает «вместилище клетки».


Остеоциты

Эти клетки встречаются у зрелой особи. Как говорилось выше, образуются они из остеобластов. Тела их расположены в полостях основного вещества, а отростки – в канальцах, отходящих от полостей. По мнению многих учёных, они принимают активное участие в образовании белка и растворяютмежклеточное неминерализированное вещество. Именно им дано обеспечивать объединение кости, а также её структурную интеграцию.

Остеокласты же – это огромные клетки со множеством ядер (15-20 близкорасположенных).

Их диаметр приблизительно 40 мкм. Они способны появляться в тех местах, где костнная структура рассасывается. Эти клетки костную ткань удаляют посредством разрушения коллагена, а также растворения минералов. Таким образом, их основная их функция – это удаление продуктов распада в кости, и, конечно же, растворение минеральных структур.


Остеокласты

И последняя вещь, входящая в состав костной ткани – это межклеточное вещество. Его так же называют костным матриксом. Представлен он, в основном, коллагеновыми волокнами, а также одним аморфным компонентом.

Благодаря коллагену минералы в кости откладываются в виде системы из двух фаз:

  • Кристаллический гидроксиапатит.
  • Аморфный фосфат кальция.

Первая фаза способствует появлению энергии, необходимой для преобразования костей. Далее кость становится полярной. Вогнутые части имеют отрицательный заряд, выпуклые – положительный.

Как известно, костная ткань по своей химической структуре довольно сложна. В её составе есть и белки (оссеин), и различные минералы, и, конечно же, вода (её, как раз больше всего – 50%). Да и клеточный состав здесь довольно сложный: остеобласты, остеоциты, остеокласты и межклеточное вещество. Понятное дело, что для человека, в химии ничего не понимающего, всё это может оказаться довольно сложным.

Но помимо этого всего, можно выделить ещё два основных вида такой ткани. Это: пластинчатая и грубоволокнистая. Уже по названиям можно представить себе, что первый тип похож скорее на грубое волокно, а второй напоминает пластинки.

Грубоволокнистый тип

Грубоволокнистому типу костной ткани лошади больше соответствует хаотическое расположение коллагена в межклеточном матриксе.

Именно из такого типа костной ткани и построен основной скелет плода, а также скелет новорождённого животного. У взрослых особей грубоволокнистый тип ткани встречается только в тех зонах, где сухожилия скреплены с костями. Также его можно заметить в швах черепа, сразу после их непосредственного зарастания.

А вот пластинчатый тип – это уже совсем, так сказать, другая история.

Здесь главная особенность в том, что волокна белка и коллагена расположены в очень строгом порядке и формируют особые пластины цилиндрической формы. Они вставлены одна в другую и «опоясывают» сосуды. Вместе с сосудами, эти пластины опоясывают и нервы, которые расположены в гаверсовом канале.

Пластинчатый тип

В общем, все эти образования получили одно-единственное название: «остеон». То есть, структурная единица пластинчатой ткани – это именно остеон (osteonum). Каждый остеон, в свою очередь, состоит из нескольких цилиндрических пластин (обычно, от 5 до 20).

Каждая такая пластина имеет диаметр в 3-4 мм. Сами по себе остеоны располагаются в полном порядке. И от этого порядка напрямую зависит функциональная нагрузка на всю кость. Из остеонов затем формируются различные перекладины вещества кости. Их ещё называют балками. Эти же балки образуют некое компактное вещество, если, конечно лежат «плотно». В противном случае, если перекладины лежат «рыхло», то балки образуют вещество губчатое.

Если первый тип костной ткани свойственен скорее организму молодому, то на втором типе построен скелет уже организма взрослого (зрелого). Впрочем, элементы первого типа иногда присутствуют у взрослых особей. А элементы второго, в зачаточном состоянии, у более молодых.

В организме любого позвоночного животного, включая человека, находится большое количество разнообразных тканей. И все эти ткани изучает такая наука как гистология. Понятно дело, что и сама гистология подразделяется на ещё более узкоспециальные дисциплины. Название же гистологии так с греческого и переводится – «знание о тканях». Человека, занимающегося этой точной наукой, называют гистологом.

В наше время основными предметами изучения гистологии являются следующие виды тканей:

  • Костная.
  • Хрящевая.
  • Соединительная.
  • Миелоидная.
  • Жидкие ткани внутренней среды.
  • Эндотелий.
  • Нервная ткань.

Из костной ткани образованы кости скелета. Она наиболее твёрдая, прочная, эластичная и упругая.


Костная ткань

Из хрящевой ткани образованы хрящи. Она состоит из хондробластов, хондроцитов, хондрокластов и межклеточного вещества.


Хрящевая ткань

Также, выделяют три типа хрящевой ткани у лошадей: гиалиновая (суставы, рёбра), волокнистая (межпозвоночные диски) и эластическая (уши).

Соединительная ткань также состоит из трёх основных типов клеток (фибропласты, фиброциты и фиброкласты) и межклеточного вещества.

Помимо всего прочего в её состав входят волокна и аморфные вещества (нейтральные и кислые гликозамингликаны). Видов соединительной ткани у коней также два. Это: рыхлая (сопровождает сосуды и нервы) и плотная (формирует фиброзный слой надкостницы). Из названия становится предельно ясна её основная функция.


Соединительная ткань

Миелоидная ткань отвечает за красный костный мозг и развитие клеток, влияющих на лошади.


Миелоидная ткань

К жидким тканям внутренней среды относят кровь и , которые участвуют в транспортировке кислорода, углекислого газа, питательных веществ и всех конечных продуктов обмена. Они выполняют сразу три важные функции: транспортную, трофическую (регуляция состава межклеточной жидкости) и защитную. С жидкими тканями, кстати, связан интересный факт – около 50% всей венозной крови содержится в костях.

Эндотелий – это особенный вид эпителиальных тканей, образующий внутреннюю стенку сосудов.


Эндотелий

Ещё одна важная вещь, которая важна для гистолога – это нервная ткань. Она состоит из нервов и нервных окончаний.

И если какой-либо вид ткани повреждён или находится в плохом состоянии, то очень велико шанс, что животное может тяжело заболеть и погибнуть. И чтобы этого не произошло, нужен правильный уход, правильное питание, и, конечно же, забота.

Вообще, такая наука как анатомия «не предназначена», так сказать, для изучения костей. Анатомия направлена, скорее, на изучение организма в целом, а также на изучение внутренней формы и структуры органов. Но, так как в организме любого живого существа всё взаимосвязано, то и скелет можно изучать в анатомическом ключе. Этим и занимается анатом. И с точки зрения этого самого анатома, кость (в переводе с латыни, кстати, обозначает «ось»), - орган вполне себе самостоятельный.

И он имеет определённые размеры, строение и форму. Таким образом, в кости взрослой особи можно выделить несколько определённых слоёв:

  1. Надкостница.
  2. Компактное и губчатое вещества.
  3. Костномозговая полость с эндоостом.
  4. Костный мозг.
  5. Суставной хрящ.

А вот кость, которая растёт, кроме пяти вышеописанных компонентов имеет ещё и некоторые другие, необходимые для формирования ростовых зон. Здесь можно выделить сразу тройку подвидов костной ткани и, конечно же, метафизарный хрящ.

Надкостница же расположена внутри кости на самой её поверхности. Состоит она, обычно, из двух слоёв: слоя внутреннего и слоя наружного.

Надкостница

Первый - это соединительная плотная ткань. И выполняет она, как водится, функции защиты. Второй – это ткань наиболее рыхлая, и за счёт неё и происходят регенерация вместе с ростом. Сама же надкостница отвечает сразу за три очень важных функции: остеобразующую, трофическую и защитную.

Компактное (или плотное, как его ещё называют) вещество расположено уже за самой надкостницей. Состоит оно из ткани пластинчатой. Отличительной особенностью данного вещества являются прочность и плотность.

Сразу под ним можно рассмотреть другое вещество - губчатое. Построено оно абсолютно из такой же ткани, из какой построено вещество компактное. Вот только отличают его костные перекладины, по свойствам своим довольно рыхлые. Они же, в свою очередь, образуют специальные ячейки.

Внутри самой кости можно обнаружить полость. Её именуют костномозговой. Стенки этой полости (впрочем, как и стенки костных балок) покрыты очень тоненькой оболочкой, состоящей из волокон. А вот стенки этой оболочки - выложены соединительной тканью. Называется данная оболочка эндоостом. В его состав входят остеобласты.

А сам красный костный мозг можно обнаружить внутри ячеек губчатого вещества или даже в костномозговой полости.


Красный костный мозг

В костном мозге проходят процессы образования крови. В ходе , а также у новорожденных особей, все кости участвуют в процессе кровообразования. С возрастом это начинает постепенно проходить, и красный мозг превращается в жёлтый.

И, наконец, суставной хрящ.


Суставной хрящ

Он построен из гиалиновой ткани. Она покрывает поверхности суставов в кости. Толщина хряща сильно различается. Более тонкий он в проксимальном отделе. Надхрящины как таковой не имеет, и почти не подвержен окостенению. Приличная нагрузка может способствовать его истончению.

Скелет взрослой лошади (да и любого другого высшего позвоночного животного) состоит из нескольких определённых типов костей. Исходя из этого, можно выделить несколько основных классификаций. Первая из них – это строение кости. Об этом было сказано в предыдущих статьях. Вторая – форма кости. К примеру, рёберные кости и кости голени сильно разнятся. Третья классификация костей у лошади – по развитию (кости молодого и старого животного различны) И, наконец, четвёртая – по функциям.

Длинные кости лошади подразделяют на дугообразные (к ним относятся рёбра) и трубчатые. Последние выполняют роль своеобразных рычагов передвижения. Состоят из длинной части тела (её ещё называют диафиз) и утолщённых концов (их именуют эпифизом). Между ними заключён метафиз, который обеспечивает рост кости.

Более короткие кости состоят, в основном из губчатого вещества. Снаружи они бывают покрыты тончайшим слоем вещества компактного или суставным хрящом. Расположены в местах большей подвижности и большей нагрузки. Они как бы являются своеобразными рессорами.

Плоские же кости образуют стенки полостей и пояс конечностей (плечевой или тазовый). Их можно представить в виде довольно широкой поверхности, которая предназначена для крепления мышц. На костях плоских можно чётко просмотреть края и углы. Состоят, обычно, из трёх слоёв компакты. Между ними – немного губчатого вещества. При этом, они активно выполняют функцию защиты. Примерами таких костей могут послужить: кости крыши черепа , грудины, лопатки, а также тазовые кости.

Из названия предельно ясно, что «os pneumaticum» или кости воздухоносные связаны с «ношением воздуха». Внутри своего так называемого тела, эти кости имеют определённых размеров полость. К этим полостям можно смело отнести пазуху и синус. Изнутри, и то, и другое, выстлано слизистыми.

К ним можно отнести оболочки:

  • Верхнечелюстную.
  • Клиновидную.
  • Лобную.

Все они в той или иной мере заполнены воздухом. Помимо этого, они могут хорошо сообщаться и с полостью носа.

Последний из подвидов – это кости типа смешанного, имеющие довольно усложнённую форму. Чаще всего данный вид сочетает в себе сразу несколько черт нескольких определённых вариантов. Состоят они из тех частей, которые имеют совершенно разное строение и очертание. Разными они могут быть и по происхождению. К ним можно отнести, например, кости или позвонки, находящиеся у самого основания черепа. Кстати, через некоторые черепные кости может проходить очень большое количество вен. И такие кости называются «диплозом».


Схема разновидности костей

Если разбирать классификацию костей по происхождению, то можно выделить два основных вида. Это кости первичные и кости вторичные.

Первичные развиваются из так называемой мезенхимы, и стадий развития проходят всего лишь две: костную и соединительнотканную. К первичным костям можно отнести многочисленные покровные кости черепа: верхнечелюстную, лобную, межтеменную, носовую, резцовую, теменную и чешую височной кости.


Первичные кости

Для них особо характерна эндсемальная оссификация. То есть, оссификация в соединительную ткань.

Вторичные кости развиваются из зачатка формирования костной и хрящевой тканей организма (склеротома мезодермы). В отличие от первичных костей, вторичные проходят сразу три главных стадии развития:

  1. Соединительнотканную.
  2. Хрящевую.
  3. Костную.

Таким образом, развивается абсолютное большинство костей скелета.

Значительно сложнее проходит процесс оссификации или окостенения вторичных костей. Задействованы здесь сразу три точки окостенения, две из которых – эпифазные, одна – диафазная.


Процесс оссификации

Сами по себе кости формируются на базе зачатков хрящей. Хрящевая ткань замещается потом костной и включает два вида окостенения: перихондральное окостенение и окостенение энхондральное.

Перихондральное начинается тогда, когда остеобласты на внутренней стороне надхрящницы образуют фиброзную ткань, а затем и пластинчатую. В этом же месте надхрящница преобразуется в надкостницу и формирует костную манжетку. Она же нарушает питание хряща, и он постепенно разрушается.

Энхондральное окостенение начинается примерно тогда, когда оканчивается перихондральное. Центры данного вида окостенения появляются в разное время в эпифазах длинных костей. В этих же центрах хрящ резорбируется, после чего формируется энхондральная кость. После неё появляется кость перихондральная. Дополнительные точки оссификации – апофизы – появляются ближе к концу плодного периода. Окостеневшие же эпифазы и диафиз соединяются с помощью хрящевых пластинок в трубчатых костях.

Хрящевые пластинки по-другому называются метафизарными хрящами (на рисунке под номером 5).

Хрящевые пластинки

Эти хрящи располагаются, как раз-таки, в зоне непосредственного роста. И кость растёт именно за счёт них. Прекращается рост с последующей оссификацией. Проще говоря, сливаются воедино все основные точки и добавочные. После чего они соединяются в одну сплошную массу, и происходит дальнейшее синостозирование.

Кости любого позвоночного животного формируются не просто так, а по определённой закономерности. Эту закономерность впервые выявил П.Ф. Лесгафт, основоположник современной функциональной анатомии.

Среди этих закономерностей Лесгафт особенно подчёркивал принцип образования костной ткани. Далее он говорил о степенях развития кости, так как развитие происходит так же по определённой закономерности. О прочности и лёгкости костей, о внешней форме и её последующей перестройки Лесгафт так же не забывал.

Теперь более подробно хочется сказать о костной ткани. Она «имеет привычку» образовываться именно в тех местах, где происходит наибольшее натяжение или сжатие.

Существует некая закономерность: прямо пропорционально развитию костной структуры. То есть, чем лучше развиты мышцы, тем лучше будут развиты и кости.


Интенсивность деятельности мышц

Их внешняя форма (костей) может меняться под давлением или растяжением. Рельеф и форма также зависят от мышц. Таким образом, если мышца соединена с костью сухожилием, то формируется бугор. Если же мышца вплетена в накостницу, то углубление.

При оптимально затрачиваемом костном материале арочное и трубчатое строение костей обеспечивает большую прочность и лёгкость.

Сама по себе внешняя форма костей напрямую зависит от того давления, которое оказывают на них (кости) окружающие ткани. Кроме того, внешняя форма может несколько видоизмениться при давлении на кость различных органов. Здесь стоит пояснить: кости образуют для органов так называемые «костные вместилища» или ямки. Соответственно, малейшее изменение костей приведёт к изменению органов и наоборот. Там, где проходят сосуды, на костях имеются определённые борозды. К тому же измениться форма костей может и при увеличении или же при уменьшении давления.

К тому же форма кости может неплохо перестроиться. Происходит это под влиянием различных внешних сил. Также на перестройку оказывает сильное влияние время. К примеру, если понаблюдать за молодыми и старыми животными, то выяснится, что у молодняка рельеф кости сильно сглажен.


Сглаженный рельеф кости

А вот у старых животных, наоборот, очень и очень резко выражен.

И всё вышеописанное ещё раз подтверждает, как всё в организме взаимосвязано. К примеру, если у животного (или даже у человека) повреждены кости, то это скажется и на внутренних тканях и органах. И если оказать своевременную и правильную помощь, то животное проживёт долгую и насыщенную жизнь.

Влияние различных факторов на развитие кости

Говоря о различных факторах, оказывающих влияние на кости скелета, нельзя не упомянуть эндокринную систему. При помощи определённых гормонов (женских или мужских), эта же система регулирует деятельность всех внутренних органов. Сами гормоны выделяются в кровь эндокринными клетками. Кроме внутренних органов, эндокринная система оказывает довольно-таки значительное влияние на развитие всех костей скелета. И таким образом, все главные точки окостенения появляются ещё до начала созревания.

Кроме того, выявлена зависимость строения скелета от состояния лошади. ЦНС осуществляет всю трофику кости. Когда трофика усиливается, то количество костной ткани в ней увеличивается в разы. Она становится значительно плотнее и компактнее. Если же она становится слишком плотной и слишком компактной, то есть риск развития остеосклероза. Когда трофика слабеет, кость, соответственно, разряжается. И начинается другое неприятное заболевание – остеопороз.

Кроме эндокринной и нервной систем, состояние кости зависит ещё и от кровеносной.


Влияние на кости кровеносной системы

Сам процесс оссификации, начиная от момента появления самой первой точки окостенения и заканчивая синостозирования, проходит при участии сосудов. Проникая в хрящ, сосуды его ещё больше разрушают. Сам же хрящ будет замещён костной тканью. После рождения оссификация и рост костей также протекают в очень тесной взаимосвязи и зависимости от кровоснабжения. Это происходит в силу того, что формирование костных пластин базируется вокруг сосудов крови.

Все изменения, происходящие в кости, как уже говорилось выше, зависят от физических нагрузок.

Именно благодаря им компактное вещество внутри кардинально перестраивается. В этом случае может наблюдаться увеличение размеров и количества остеонов. Если нагрузка неправильно дозирована, то могут возникнуть серьёзные осложнения. Если же наоборот, правильно, то это значительно замедлит все процессы старения в кости.

В молодом возрасте, понятное дело, скорость резорбции ещё довольно низкая, а костный матрикс образуется быстро. В зрелом и старческом возрастах все изменения скелета связывают со значительно возросшей скоростью резорбции и низкими процессами образования костного вещества.

Так или иначе, кость абсолютно любого живого организма – структура динамическая. Она способна приспособится к постоянно меняющимся условиям окружающей среды.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Кости - ossa (ед. число - os), располагаясь внутри тела, выполняют функцию рычагов для прикрепления и приложения действия скелетной мускулатуры, формируют стенки полостей тела, а также служат емким депо минеральных и органических веществ, необходимых организму, и местом размещения красного костного мозга. Совокупность костей образует скелет.

Кость построена из костной ткани и покрыта тонким слоем соединительной ткани, образующей надкостницу. Основу костной ткани составляют костные клетки - остеоциты и костные пластинки толщиной 3--7 мкм, состоящие из параллельно идущих коллагеновых волокон, пропитанных солями извести и замурованных в особое плотное бесструктурное вещество - матрикс. Последний состоит из воды (50%), органических (около 28%) и неорганических (около 22%) веществ.

Органические соединения и вода придают кости эластичность, а минеральные - твердость. Химический состав костей испытывает значительные колебания в зависимости от возраста, условий питания и физиологического состояния организма. Кости молодых животных за счет большого количества влаги и органических веществ отличаются повышенной эластичностью. С возрастом они теряют влагу и органические компоненты, становясь более ломкими. Подобная ситуация может возникнуть и в результате нарушения обмена веществ в организме.

На развитие и структуру костей действуют многочисленные факторы - эндокринные, алиментарные, статодинамические и многие другие. Так, при дефиците гормон» роста приостанавливается рост костей в длину за счет подавления пролиферативной активности клеток эпифизарного хряща. Его избыток приводит к гигантиз-как рост хряща продолжается дольше обычного срока. Раннее половое созревание или введение половых гормонов ускоряет созревание костей и преждевременное окостенение эпифизарных пластинок, что сопровождается карликовостью. Недостаток половых гормонов в зрелом возрасте сопровождается остеопорозом.

Гормон паращитовидной железы вызывает активизацию функции остеокластов, резорбцию кости и выведение кальция из костной ткани. Это может привести к патологическому состоянию - фиброзному оститу.

Гормон щитовидной железы - тирокальцитонин -действует противоположно, а дефицит йодсодержащих гормонов этой железы (тироксин и др.) сопровождается подавлением функции остеобластов и процесса оссифи-кации, что тормозит рост трубчатых костей в длину.

Большое влияние на структуру костной ткани оказывают витамины. Дефицит витамина С вызывает ин-гибицию коллагенообразования остеобластами и образование новых костных пластинок, что приводит к уменьшению прочности кости.

При дефиците витамина D тормозится кальцифика-ция органического матрикса, что приводит к размягчению костей - остеомаляции.

Избыток витамина А сопровождается деструкцией костей в связи с усилением функции остеобластов.

На состояние костной ткани существенное влияние оказывает содержание кальция, фосфора и других минеральных и органических веществ в рационе, а также физические нагрузки. Продолжительная неподвижность приводит к выведению солей и повышению функции остеокластов.

Кость состоит из плотного компактного и рыхлого губчатого вещества. Губчатое вещество - substantia spongiosa пористое и состоит из тонких костных пластинок - перекладин, взаимно переплетающихся под различными углами соответственно направлению действующих на кость деформирующих сил. Они образуют ячейки, заполненные костным мозгом.

Компактное вещество - substantia compacta плотное и имеет сложную архитектонику, структурно-функциональной единицей которой является остеон - osteon, или гаверсова система. Остеон представляет собой комплекс большого числа костных пластинок. За счет волокнистого строения пластинки свернуты в трубочки разного диаметра и вставлены одна в другую. Трубочки плотно сомкнуты, между ними слоями расположены костные клетки, отростки которых проникают в соседние костные пластинки и связывают их.

Особую прочность остеону придает то, что коллагено-вые волокна в соседних пластинках идут по взаимно перпендикулярным направлениям. Внутри каждого остеона имеется канал для прохождения кровеносных сосудов и вазомоторных нервов. Компактное вещество костей построено из многих остеонов, ориентированных в основном вдоль длинной оси кости. Между ними, связывая остеоны, располагаются так называемые вставочные пластинки, имеющие дугообразную форму. Снаружи компактное вещество костей покрыто несколькими слоями прямых продольных общих, как бы упаковывающих, костных пластинок, над которыми располагается надкостница.

Надкостница (периост)- periosteum - это пластинка соединительной ткани, образованная снаружи коллаге-новыми волокнами (волокнистый слой надкостницы), а внутри особыми клетками - остеокластами (костеоб-разователями) и остеобластами (костеразрушителя-ми). Наружный волокнистый слой является покровным, защитным, а внутренний (клеточный)- костеобразу-ющим (остеогенным). За счет этого слоя надкостницы кость растет в толщину. При переломах костей именно надкостница образует новую молодую кость (костную мозоль), необходимую для сращения костных осколков.

Надкостница участвует в перестройке костей и в течение жизни животного в соответствии с изменяющимися условиями действия на кость различных сил. Усиление мышечной нагрузки на кости способствует укреплению костной ткани за счет увеличения числа осте-онов и изменения их взаимного расположения. Напротив, при уменьшении действия мышц кости становятся тоньше и мягче.

Перестройка костной ткани осуществляется остеокластами и остеобластами, расположенными в периосте, а также проникающими из него внутрь костей. При этом первые клетки разрушают старую костную ткань по линии уменьшения действия нагрузочных сил, а вторые - способствуют образованию и нарастанию новой молодой костной ткани по линии усиления мышечной нагрузки. Отсюда следует, что для укрепления костяка и его нормального функционирования необходима активная физическая (мышечная) работа.

Надкостница густо пронизана кровеносными и лимфатическими сосудами, проникающими по остеонным каналам внутрь кости и осуществляющими ее питание. Много в надкостнице и нервных окончаний - болевых рецепторов, что делает кость весьма чувствительной. В то же самое время костная и хрящевая ткани не ощущают боль, так как внутри костей и хрящей болевые нервы не проходят.

Соединительно-тканная пластинка покрывает не только поверхности костей, но переходит и на хрящевые структуры скелета, получая при этом название надхрящница - perichondrium, а также выстилает полости трубчатых костей, образуя эндост - endosteum.

Рост и развитие костей. Первичные закладки костей у животных появляются на второй-третьей неделе эмбрионального развития. Первым закладывается позвоночный столб с ребрами, затем пояса конечностей и сами конечности; позднее всего - кости головы. Закладка костных структур начинается со склеробластемной (соединительно-тканной) стадии, когда элементы ске лета создаются эмбриональной соединительно* тканью - мезенхимой, как бы подготавливая формы (модели) для будущего «костного отлития».

Остеогенез начинается с активного проникновения в костный зачаток кровеносных сосудов и появления в нем особых костепроизводящих клеток - остеобластов. которые формируют очаги окостенения. При этом многие кости черепа (лобные, верхние и нижние челюсти, резцовые, теменные, височные, слезные, носовые, скуловые и барабанные части каменистых костей) развиваются непосредственно из мезенхимы и проходят только две стадии формирования - соединительно-тканную и костную. Эти кости называются первичными. У новорожденных животных покровные кости связаны между собой и с другими костями соединительно-тканными пластинками, являющимися остатками перепончатого скелета.

Некоторые кости проходят окостенение в три стадии: соединительно-тканную, хрящевую и костную. Такие кости получают название вторичных. Оссифи-кация вторичных костей протекает более сложно и в трубчатых костях осуществляется из трех точек окостенения: двух эпифизарных и одной диафизарной. Хрящевые участки (метафизарный хрящ) между указанными точками постепенно заменяются костной тканью, суживаются, но сохраняются и после рождения, обеспечивая рост кости в длину. Исчезновение хрящевой ткани между эпифизами и диафизом трубчатых костей происходит у животных в разные периоды постнатального развития. Этот факт используется при Внешний рельеф костей, как и внутреннее их устройство, детерминированы генетически и находятся в прямой зависимости от величины и направленности механических воздействий, передаваемых через связки, мышцы и их сухожилия. Оставляют свои следы на поверхности костей и прилежащие крупные кровеносные сосуды.

Выросты на костях в зависимости от формы именуются: 1) отростки - processus - четко ограниченный выступ; 2) бугор - tuber - толстое возвышение с широким основанием; 3) бугорок - tuberculum - возвышение, напоминающее бугор, но меньших размеров; 4) ость - spina - пластинчатый высокий вырост; 5) головка - caput - вырост сферической формы; 6) блок - trochlea - цилиндрический выступ; 7) гребень - crista, pecten - плоский вырост с неровным краем; 8) мыщелок - condylus - шаровидный вырост; 9) наиболее крупные бугры получили специальные названия

- вертел - trochanter; 10) шероховатость - tuberositas

Большое число маленьких бугорков.

Углубления: 1) ямка - fossa - глубокое вдавливание округлой формы; 2) мелкая ямка (ямочка) - fovea; 3) полость - cavum; 4) плоское вдавливание - impressio; 5) желоб (борозда)- sulcus - продольное углубление с широким дном; 6) щель - fissura - узкое продольное углубление; 7) отверстие - foramen; 8) канал - canalis; 9) вырезка - incisura - выемка по краю кости.

Некоторые отростки в процессе эмбрионального развития имеют собственные точки окостенения и получают название апофиз - apophysis.

Скелет - skeleton (Рис. 17-106) (греч.- высушенный) представляет собой стройную и упорядоченную систему определенным образом организованных и в определенном порядке соединенных между собой костей и хрящей, подчиняющихся законам билатеральной симметрии и сегментного расчленения.

Число костей в теле животных следующее: у быка домашнего - 207-209; у лошади - 207-214; у овцы - 191-213; у козы - 199-206; у свиньи домашней - 282-288; у собаки - 271-282; у кошки - 271-274; у кролика - 275.

Скелет подразделяют на осевой и периферический. В состав осевого скелета входят: череп, позвоночный столб, ребра и грудная кость. Периферический скелет представлен костями грудных и тазовых конечностей.


Кость (os) - это орган, являющийся компонентом системы органов опоры и движения, имеющий типичную форму и строение, характерную архитектонику сосудов и нервов, построенный преимущественно из костной ткани, покрытый снаружи надкостницей (periosteum) и содержащий внутри костный мозг (medulla osseum).

Каждая кость имеет определенную форму, величину и положение в теле человека. На формообразование костей существенное влияние оказывают условия, в которых кости развиваются, и функциональные нагрузки, которые кости испытывают в процессе жизнедеятельности организма. Каждой кости свойственно определенное число источников кровоснабжения (артерий), наличие определенных мест их локализации и характерная внутриорганная архитектоника сосудов. Указанные особенности распространяются и на нервы, иннервирующие данную кость.
В состав каждой кости входят несколько тканей, находящихся в определенных соотношениях, но, безусловно, основной является пластинчатая костная ткань. Рассмотрим ее строение на примере диафиза длинной трубчатой кости.
Основную часть диафиза трубчатой кости, расположенную между наружными и внутренними окружающими пластинками, составляют остеоны и вставочные пластинки (остаточные остеоны). Остеон, или гаверсова система, является структурно-функциональной единицей кости. Остеоны можно рассмотреть на шлифах или гистологических препаратах (рис. 1.1).
Остеон представлен концентрически расположенными костными пластинками (гаверсовыми), которые в виде цилиндров разного диаметра, вложенных друг в друга, окружают гаверсов канал. В последнем проходят кровеносные сосуды и нервы. Остеоны большей частью располагаются параллельно длиннику кости, многократно анастомозируя между собой. Количество остеонов индивидуально для каждой кости, у бедренной кости оно составляет 1,8 на 1 мм[*]. При этом на долю гаверсова канала приходится 0,2-0,3 мм2. Между остеонами располагаются вставочные, или промежуточные, пластинки, которые идут во всех направлениях. Вставочные пластинки представляют собой оставшиеся части подвергшихся разрушению старых остеонов. В костях постоянно происходят процессы новообразования и разрушения остеонов.
Снаружи кость окружают несколько слоев генеральных, или общих, пластинок, которые располагаются непосредственно под надкостницей (периостом). Через них проходят прободающие каналы (фолькмановские), которые содержат кровеносные сосуды того же названия. На границе с костномозговой полостью в трубчатых костях находится слой внутренних окружающих пластинок. Они пронизаны многочисленными каналами, расширяющимися в ячейки. Костномозговая полость выстлана эндостом, который представляет собой тонкий соединительнотканный слой, включающий уплощенные неактивные остеогенные клетки.

В костных пластинках, имеющих форму цилиндров, оссеиновые фибриллы плотно и параллельно прилежат друг к другу. Между концентрически лежащими костными пластинками остеонов находятся остеоциты. Отростки костных клеток, распространяясь по канальцам, проходят в направлении к отросткам соседних остеоцитов, вступают в межклеточные соединения, формируя пространственно ориентированную лакунарно-канальцевую систему, участвующую в метаболических процессах.
В составе остеона насчитывается до 20 и более концентрических костных пластинок. В канале остеона проходят 1-2 сосуда микроциркуляторного русла, безмиелиновые нервные волокна, лимфатические капилляры, сопровождаемые прослойками рыхлой соединительной ткани, содержащей остеогенные элементы, в том числе периваскулярные клетки и остеобласты. Каналы остеонов соединены между собой, с периостом и костномозговой полостью за счет прободающих каналов, что способствует анастомозированию сосудов кости в целом.
Снаружи кость покрыта надкостницей, образованной волокнистой соединительной тканью. В ней различают наружный (волокнистый) слой и внутренний (клеточный). В последнем локализуются камбиальные клетки-предшественники (преостеобласты). Основные функции периоста - защитная, трофическая (за счет проходящих здесь кровеносных сосудов) и участие в регенерации (благодаря наличию камбиальных клеток).
Надкостница покрывает кость снаружи (рис. 1.2), за исключением тех мест, где располагается суставной хрящ и прикрепляются сухожилия мышц или связки (на суставных поверхностях, буграх и бугристостях). Надкостница отграничивает кость от окружающих тканей. Она представляет собой тонкую прочную пленку, состоящую из плотной соединительной ткани, в которой располагаются кровеносные и лимфатические сосуды и нервы. Последние из надкостницы проникают в вещество кости.
Надкостница играет большую роль в развитии (росте в толщину) и питании кости. Ее внутренний остеогенный слой является местом образования костной ткани. Надкостница богато иннервирована, поэтому отличается высокой чувствительностью. Кость, лишенная надкостницы, становится нежизнеспособной, омертвевает. При оперативных вмешательствах на костях по поводу переломов надкостницу необходимо сохранять.
Практически у всех костей (за исключением большинства

  1. костей черепа) имеются суставные поверхности для сочленения с другими костями. Суставные поверхности покрыты не надкостницей, а суставным хрящом (cartilago articularis). Суставной хрящ по своему строению чаще является гиалиновым и реже - фиброзным.
Внутри большинства костей в ячейках между пластинками
  1. губчатого вещества или в костномозговой полости (cavitas те- dullaris) находится костный мозг. Он бывает красный и желтый. У плодов и новорожденных в костях содержится только красный (кроветворный) костный мозг. Он представляет собой
Рис. 1.2. Внешнее строение плечевой кости: j 1 - проксимальный (верхний) эпифиз; 2 - диафиз (тело); 3 - дистальный
(нижний) эпифиз; 4 - надкостница

Рис. 1.3. Скелет человека (вид спереди):
1 череп; 2 - грудина; 3 ключица: 4 - ребра; 5 - плечевая кость; 6 - локтевая кость; 7 лучевая кость; 8 кости кисти; 9 тазовая кость; 10 бедренная кость; 11 надколенник; 12 малоберцовая кость; 13 - большеберцовая кость; 14 кости стопы
однородную массу красного цвета, богатую кровеносными сосудами, форменными элементами крови и ретикулярной тканью. В красном костном мозге содержатся также костные клетки, остеоциты. Общее количество красного костного мозга составляет около 1500 см[†].
У взрослого человека костный мозг частично заменяется желтым, который в основном представлен жировыми клетками. Замене подлежит только костный мозг, расположенный в пределах костномозговой полости. Следует отметить, что изнутри костномозговая полость выстлана специальной оболочкой, получившей название эндоста (endosteum).
Учение о костях носит название остеология. Точное число костей указать нельзя, так как их количество изменяется с возрастом. В течение жизни образуется более 800 отдельных костных элементов, из них 270 появляются во внутриутробном периоде, остальные - после рождения. При этом большая часть отдельных костных элементов в детском и юношеском возрастах срастается между собой. Скелет у взрослого человека содержит только 206 костей (рис. 1.3, 1.4). Кроме постоянных костей, в зрелом возрасте могут быть непостоянные (се- самовидные) кости, появление которых обусловлено индивидуальными особенностями строения и функций организма.
Кости вместе с их соединениями в организме человека составляют скелет. Под скелетом понимается комплекс плотных анатомических образований, выполняющих в жизнедеятельности организма преимущественно механические функции. Можно выделить твердый скелет, представленный костями, и мягкий скелет, представленный связками, мембранами и хрящевыми соединениями.
Отдельные кости и скелет человека в целом выполняют в организме различные функции. Кости туловища и нижних конечностей выполняют опорную функцию для мягких тканей (мышц, связок, фасций, внутренних органов). Большинство костей являются рычагами. К ним прикрепляются мышцы, которые
обеспечивают локомоторную функцию (перемещение тела в пространстве). Обе названные функции позволяют назвать скелет пассивной частью опорно-двигательного аппарата.
Скелет человека является антигравитационной конструкцией, которая противодействует силе земного притяжения. Под воздействием последней тело человека прижимается к земле, скелет при этом препятствует изменению формы тела.
Кости черепа, туловища и тазовые кости выполняют функцию защиты от возможных повреждений для жизненно важных органов, крупных сосудов и нервных стволов. Так, череп является вместилищем для головного мозга, органа зрения, органа слуха и равновесия. В позвоночном канале располагается спинной мозг. Грудная клетка защищает сердце, легкие, крупные сосуды и нервные стволы. Тазовые кости предохраняют от повреждений прямую кишку, мочевой пузырь и внутренние половые органы.
Большинство костей содержит внутри красный костный мозг, который является органом кроветворения, а также органом иммунной системы организма. Кости при этом защищают красный костный мозг от повреждения, создают благоприятные условия для его трофики и созревания форменных элементов крови.
Кости принимают участие в минеральном обмене. В них депонируются многочисленные химические элементы, преимущественно соли кальция, фосфора. Так, при введении в организм радиоактивного кальция уже через сутки более половины этого вещества накапливается в костях.

Кость, os, ossis, как орган живого организма состоит из нескольких тканей, главнейшей из которых является костная.

Химический состав кости и ее физические свойства .

Костное вещество состоит из двоякого рода химических веществ: органических (Уз), главным образом оссеина, и неорганических (2/з), главным образом солей кальция, особенно фосфорнокислой извести (более половины - 51,04 %). Если кость подвергнуть действию раствора кислот (соляной, азотной и др.), то соли извести растворяются (decalcinatio), а органическое вещество остается и сохраняет форму кости, будучи, однако, мягким и эластичным. Если же кость подвергнуть обжиганию, то органическое вещество сгорает, а неорганическое остается, также сохраняя форму кости и ее твердость, но будучи при этом весьма хрупким. Следовательно, эластичность кости зависит от оссеина, а твердость ее - от минеральных солей. Сочетание неорганических и органических веществ в живой кости и придает ей необычайные крепость и упругость. В этом убеждают и возрастные изменения кости. У маленьких детей, у которых оссеина сравнительно больше, кости отличаются большой гибкостью и потому редко ломаются. Наоборот, в старости, когда соотношение органических и неорганических веществ изменяется в пользу последних, кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Строение кости.

Структурной единицей кости, видимой в лупу или при малом увеличении микроскопа, является остеон , т. е. система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы.

Остеоны не прилегают друг к другу вплотную, а промежутки между ними заполнены интерстициальными костными пластинками. Остеоны располагаются не беспорядочно, а соответственно функциональной нагрузке на кость: в трубчатых костях параллельно длиннику кости, в губчатых - перпендикулярно вертикальной оси, в плоских костях черепа - параллельно поверхности кости и радиально.

Вместе с интерстициальными пластинками остеоны образуют основной средний слой костного вещества, покрытый изнутри (со стороны эндоста) внутренним слоем костных пластинок, а снаружи (со стороны периоста) - наружным слоем окружающих пластинок. Последний пронизан кровеносными сосудами, идущими из надкостницы в костное вещество в особых прободающих каналах. Начало этих каналов видно на мацерирован-ной кости в виде многочисленных питательных отверстий (foramina nut-rfcia). Проходящие в каналах кровеносные сосуды обеспечивают обмен веществ в кости. Из остеонов состоят более крупные элементы кости, видимые уже невооруженным глазом на распиле или на рентгенограмме, - перекладины костного вещества, или трабекулы . Из этих трабекул складывается двоякого рода костное вещество: если трабекулы лежат плотно, то получается плотное компактное вещество , substantia compacta. Если трабекулы лежат рыхло, образуя между собою костные ячейки наподобие губки, то получается губчатое, трабекулярное вещество , substantia spongiosa, trabecularis (spongia, греч. - губка).

Распределение компактного и губчатого вещества зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют преимущественно функцию опоры (стойки) и движения (рычаги), например в диафизах трубчатых костей.

В местах, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество, например в эпифизах трубчатых костей (рис. 7).

Перекладины губчатого вещества располагаются не беспорядочно, а закономерно, также соответственно функциональным условиям, в которых находится данная кость или ее часть. Поскольку кости испытывают двойное действие - давление и тягу мышц, постольку костные перекладины располагаются по линиям сил сжатия и растяжения. Соответственно разному направлению этих сил различные кости или даже части их имеют разное строение. В покровных костях свода черепа, выполняющих преимущественно функцию защиты, губчатое вещество имеет особый характер, отличающий его от остальных костей, несущих все 3 функции скелета. Это губчатое вещество называется диплоэ, diploe (двойной), так как оно состоит из неправильной формы костных ячеек, расположенных между двумя костными пластинками - наружной, lamina externa, и внутренней, lamina interna. Последнюю называют также стекловидной, lamina vftrea, так как она ломается при повреждениях черепа легче, чем наружная.

Костные ячейки содержат костный мозг - орган кроветворения и биологической защиты организма . Он участвует также в питании, развитии и росте кости. В трубчатых костях костный мозг находится также в канале этих костей, называемом поэтому костномозговой полостью, cavitas medullaris.

Таким образом, все внутренние пространства кости заполняются костным мозгом, составляющим неотъемлемую часть кости как органа.

Костный мозг бывает двух родов: красный и желтый .

Красный костный мозг , medulla ossium rubra (детали строения см. в курсе гистологии), имеет вид нежной красной массы, состоящей из ретикулярной ткани, в петлях которой находятся клеточные элементы, имеющие непосредственное отношение к кроветворению (стволовые клетки) и костеобразованию (костесозидатели - остеобласты и костеразрушители - остеокласты). Он пронизан нервами и кровеносными сосудами, питающими, кроме костного мозга, внутренние слои кости. Кровеносные сосуды и кровяные элементы и придают костному мозгу красный цвет.

Желтый костный мозг , medulla ossium flava, обязан своим цветом жировым клеткам, из которых он главным образом и состоит.

В периоде развития и роста организма, когда требуются большая кроветворная и костеобразующая функции, преобладает красный костный мозг (у плодов и новорожденных имеется только красный мозг). По мере роста ребенка красный мозг постепенно замещается желтым, который у взрослых полностью заполняет костномозговую полость трубчатых костей.

Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей, periosteum (периост).

Надкостница - это тонкая, крепкая соединительнотканная пленка бледно-розового цвета, окружающая кость снаружи и прикрепленная к ней с помощью соединительнотканных пучков - прободающих волокон, проникающих в кость через особые канальцы. Она состоит из двух слоев: наружного волокнистого (фиброзного) и внутреннего костеобразующего (остеогенного, или камбиального). Она богата нервами и сосудами, благодаря чему участвует в питании и росте кости в толщину. Питание осуществляется за счет кровеносных сосудов, проникающих в большом числе из надкостницы в наружное компактное вещество кости через многочисленные питательные отверстия (foramina nutricia), а рост кости осуществляется за счет остеобластов, расположенных во внутреннем, прилегающем к кости слое (камбиальном). Суставные поверхности кости, свободные от надкостницы, покрывает суставной хрящ, cartilage articularis.

Таким образом, в понятие кости как органа входят костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ и многочисленные нервы и сосуды.

Контрольные вопросы к лекции :

1. Понятие о костном (твердом) и соединительнотканном скелете,

2. Общий обзор скелета человека, классификация костей.

3. Строение кости как органа, надкостница, костный мозг.

4. Структура остеона: гаверсовы каналы, костные пластинки; костные клетки - остеобласты, остеоциты, остеокласты.

5. Строение кости; диафиз, метафиз, эпифиз, апофиз, компактное и губчатое вещество.

6. Химический состав кости.

Лекция № 5

Кость в рентгеновском изображении. Влияние труда и спорта на строение костей живого человека. Взаимоотношение социального и биологического факторов в строении костей.

Цель лекции . Рассмотреть строение кости в целостном организме.

план лекции:

1. Рассмотреть рентгеноанатомию костей.

2. Рассмотреть зависимость развития кости от внутренних и внешних факторов.

3. Раскрыть структурно-функциональные взаимоотношения активной и пассивной частей опорно-двигательного аппарата.

4. Раскрыть роль русского ученого П.Ф. Лесгафта в изучении взаимозависимости мышечной и костной систем.

5. Рассмотреть взаимоотношения социального и биологического факторов в формировании скелета человека.

РЕНТГЕНОАНАТОМИЯ КОСТЕЙ.

На рентгенограммах ясно различимы компактное и губчатое вещество. Первое дает интенсивную контрастную тень, соответственно плоскости кортикального слоя, а в области substantia spongiosa тень имеет сетевидный характер (см. рис.1).

Компактное вещество эпифизов трубчатых костей и компактное вещество костей, построенных преимущественно из губчатого вещества (кости запястья, предплюсны, позвонки), имеет вид тонкого слоя, окаймляющего губчатое вещество. Этот тонкий кортикальный слой на сустав­ных впадинах представляется более толстым, чем на суставных головках.

В диафизах трубчатых костей компактное вещество различно по толщине: в средней части оно толще, по направлению к концам суживается. При этом между двумя тенями кортикального слоя заметна костномозговая полость в виде некоторого просветления на фоне общей тени кости. Если названная полость прослеживается не на всем протяжении, это говорит о наличии патологического процесса.

Рентгенологические контуры компактного вещества диафизов четкие и гладкие. В местах прикрепления связок и мышц контуры кости неров­ные. На фоне кортикального слоя диафизов замечаются тонкие полосы просветления, соответствующие сосудистым каналам. Они располагаются обычно косо: в длинных трубчатых костях верхней конечности - ближе и по направлению к локтевому суставу; в длинных трубчатых костях ниж­ней конечности - дальше и по направлению от коленного сустава; в коротких трубчатых костях кисти и стопы - ближе и по направлению к концу, не имеющему истинного эпифиза.

Губчатое вещество на рентгенограмме имеет вид петлистой сети, состоя­щей из костных перекладин с просветлениями между ними. Характер этой сети зависит от расположения костных пластинок в данном участке соответственно линиям сжатия и растяжения.

Развитие кости . Рентгенологическое исследование костной системы становится возможным со 2-го месяца утробной жизни, когда на почве хряща или соединительной ткани возникают точки окостенения.

Появление точек окостенения легко определяется на рентгенограммах, причем эти точки, отделенные хрящевой тканью, выглядят как отдельные костные фрагменты. Они могут дать повод для ошибочных диагнозов перелома, надлома или некроза (омертвения) кости. В силу этого знание расположения костных ядер, сроков и порядка их появления в практическом отношении является крайне важным.

Поэтому окостенение излагается нами во всех соответствующих местах на основании данных не анатомического исследования трупов, а рентгено-анатомии (исследование живого человека).

В случаях неслияния добавочных ядер с основной частью кости они могут сохраниться на всю жизнь в виде самостоятельных, непостоянных или добавочных костей. Обнаружение их на рентгенограмме может стать поводом для диагностических ошибок.

Все основные ядра окостенения появляются в костях скелета до начала полового созревания, называемого пубертатным периодом. С наступлением пубертатного периода начинается сращение эпифизов с метафизами, т. е. превращение синхондроза, соединяющего костный эпифиз с костным метафизом, в синостоз. Это рентгенологически выражается в постепенном исчез­новении просветления на месте метаэпифизарной зоны, соответствующей метаэпифизарному хрящу, отделяющему эпифиз от метафиза. По наступлении полного синостоза следов бывшего синхондроза определить не удается (рис. 1).

Старение костной системы . В старости костная система претерпевает значительные изменения. С одной стороны, наблюдается уменьшение числа костных пластинок и разрежение кости (остеопороз); с другой - происходит избыточное образование кости в виде костных наростов (о с т е ф и т о в) и обызвествление суставного хряща, связок и сухожилий на месте прикрепления их к кости.

Соответственно этому рентгеновская картина старения костносуставного аппарата слагается из следующих изменений, которые не следует трактовать как симптомы патологии (дегенерации).

I. Изменения, обусловленные атрофией костного вещества:

1) остеопороз (на рентгенограмме кость становится более прозрачной);

2) дефор­мация суставных головок (исчезновение округлой формы их, «стачивание» краев, появление «углов»).

II. Изменения, обусловленные избыточным отложением извести в прилегающих к кости соединительнотканных и хрящевых образованиях:

1) сужение суставной «рентгеновской» щели вследствие обызвествления суставного хряща;

2) усиление рельефа диафиза вследствие обызвествления на месте прикрепления сухожилий и их фиброзных влагалищ;

3) костные наросты - остеофиты , образующиеся вследствие обызвествления свя­зок на месте прикрепления их к кости.

Описанные изменения особенно хорошо прослеживаются в позвоночнике и кисти. В остальных отделах скелета наблюдаются три основных рентгенологических симптома старения: остеопороз, усиление рельефа кости и сужение суставных щелей. У одних людей эти признаки старения заме­чаются рано (30-40 лет), у других - поздно (60-70 лет) или не насту­пают совсем.

Подводя итоги изложению общих данных об онтогенезе костной системы, можно сказать, что рентгенологическое исследование позволяет точнее и глубже изучать развитие скелета в его функционирующем состоянии, чем исследование только трупного материала.

При этом отмечается ряд нормальных морфологических изменений:

1) появление точек окостенения - основных и добавочных;

2) процесс синостозирования их друг с другом;

3) старческая инволюция кости.

Описанные изменения есть нормальные проявления возрастной изменчивости костной системы. Следовательно, понятие «норма» нельзя огра­ничивать только взрослым человеком и рассматривать его как некий единый тип. Это понятие необходимо распространить и на все другие возрасты.

ЗАВИСИМОСТЬ РАЗВИТИЯ КОСТИ ОТ ВНУТРЕННИХ И ВНЕШНИХ ФАКТОРОВ

Скелет, как и всякая система органов, является частью организма, на которой отра­жаются различные процессы, совершающиеся в нем. Поэтому на развитие костной системы влияет много факторов.

Влияние внутренних факторов . Рентгенологическое исследование выявляет ряд морфо­логических изменений костей, зависящих от деятельности других органов. Особенно ясно при рентгенографии определяется связь между костной системой ижелезами внутренней секреции . Активное включение половых желез влечет за собой начало полового созревания, пубертатный период . Перед этим, в предпубертатный период, усиливается деятельность других желез внутренней секреции, придатка мозга - гипофиза, с функцией которого свя­зано появление ядер окостенения. К началу предпубертатного периода появляются все основные точки окостенения, причем отмечается половое различие в сроках их появления: у девочек на 1-4 года раньше, чем у мальчиков. Наступление предпубертатного периода, связанного с функцией гипофиза, совпадает с появлением ядра окостенения в гороховидной кости, относящейся к категории сесамовидных костей.

Накануне пубертатного периода окостеневают и другие сесамовидные кости, а именно - у пястно-фалангового сочленения I пальца. Начало пубертатного периода, когда, по выраже­нию известного исследователя эндокринного аппарата Бидля, «половые железы начинают играть главную мелодию в эндокринном концерте», проявляется в костной системе наступлением синостозов между эпифизами и метафизами, причем самый первый такой синостоз наблюдается в I пястной кости. Поэтому на основании сопоставления его с другими данными о половом развитии (появление терминальной растительности, наступление менструаций и т. п.) синостоз 1 пястной кости считается показателем начинающегося полового созре­вания, т. е. показателем начала пубертатного периода; у петербургских жи­телей синостоз I пястной кости наступает в возрасте 15-19 лет у юношей и в 13-18 лет у девушек.

Полная половая зрелость , также получает известное отражение в скелете: в это время заканчиваются синостозы эпифизов с метафизами во всех трубчатых костях, что наблюдается у женщин в возрасте 17-21 года, а у мужчин - в 19-23 года. Так как с окончанием процесса синостозирования заканчивается pост костей в длину, становится понятным, почему мужчины, у которых половое созревание заканчивается позже чем, у женщин, в массе имеют более высокий рост, нежели женщины.

Учитывая эту связь костной системы с эндокринной и сопоставляя данные о возрастных особенностях скелета с данными о половом созревании и общем развитии организма, можно говорить о так называемом «костном возрасте». Благодаря этому по рентгеновской картине некоторых отделов скелета, особенно кисти, можно определить возраст данного индивидуума или судить о правильности у него процесса окостенения, что имеет практическое значение для диагностики, судебной медицины и пр. При этом, если «паспортный» возраст указывает на число прожитых лет (т. е. на количественную сторону), то «костный» возраст до извест­ной степени свидетельствует о качественной их стороне.

При рентгенологическом исследовании выявляется также зависимость строения кости от состояния нервной системы , которая, регулируя все процессы в организме, осуще­ствляет, в частности, трофическую функцию кости. При усиленной трофической функции нервной системы в кости откладывается больше костной ткани, и она становится более плот­ной, компактной (остеосклероз). Наоборот, при ослаблении трофики наблюдается разрежение кости - остеопороз. Нервная система оказывает также влияние на кость через мускулатуру, сокращением которой она управляет (о чем будет сказано ниже). Наконец различные части центральной и периферической нервной системы обусловливают форму окружающих и прилегающих костей. Так, все позвонки образуют позвоночный канал вокруг спинного мозга. Кости черепа образуют костную коробку вокруг головного мозга и приобре­тают форму последнего. Вообще костная ткань развивается вокруг элементов периферической нервной системы, в результате чего возникают костные каналы, борозды и ямки, слу­жащие для прохождения нервов и других нервных образований (узлов).

Развитие кости находится также в весьма тесной зависимости от кровеносной системы. Весь процесс окостенения от момента появления первого костного ядра до окончания синостозирования проходит при непосредствен­ном участии сосудов, которые, проникая в хрящ, способствуют его разру­шению и замещению костной тканью. При этом костные пластинки (гаверсовы) откладываются в определенном порядке вокруг кровеносных сосудов, образуя гаверсовы системы с центральным каналом для соответственного сосуда. Следовательно, кость при своем возникновении строится вокруг сосудов. Этим же объясняется образование сосудистых каналов и борозд в костях на местах прохождения и прилегания к ним артерий и вен.

Окостенение и рост кости после рождения также протекает в тесной зависимости от кровоснабжения . Можно наметить ряд этапов возрастной изменчивости, кости, связан­ной с соответствующими изменениями кровеносного русла (рис. 2).

1. Неонатальный этап , свойственный плоду (последние месяцы внутриутробного развития) и новорожденному; сосудистое русло кости разделено на ряд сосудистых районов (эпифиз, диафиз, метафиз, апофиз), которые между собой не сообщаются (замкнутость, изолированность) и в пределах которых сосуды не соединяются друг с другом, не анастомозируют (концевой характер сосудов, «конечность»).

2. Инфантильный этап , свойственный детям до начала наступления синостозов; сосудистые районы еще разобщены, но в пределах каждого из них сосуды анастомозируют друг с другом и концевой характер их исчезает («замкнутость» при отсутствии «конечности»).

3. Ювенильный этап , свойственный юношам, начинается установлением связей между сосудами эпифиза и метафиза через метаэпифизарный хрящ, в силу чего начинает исчезать и замкнутость эпифизарных. метафизарных и диафизарных сосудов.

4. Зрелый этап , свойственный взрослым; наступают синостозы, и все внутрикостные сосуды составляют единую систему: они не «замкнуты» и не «конечны».

5. Сенильный этап , свойственный старикам; сосуды становятся тоньше и вся сосудистая сеть беднее.

На форму и положение костей влияют к внутренности , для которых они образуют костные вместилища, ложа, ямки и т. п.

Формирование скелета и органов относится к началу эмбриональной жизни; при своем развитии они оказывают влияние друг на друга, почему и получается соответствие органов и их костных вместилищ, например грудной клетки и легких, таза и его органов, черепа и мозга и т. п.

В свете этих взаимоотношений нужно рассматривать развитие всего скелета.

Влияние внешних (социальных) факторов на строение и развитие скелета. Единство формы и функции в строении ко­стей. Воздействуя на природу в процессе трудовой деятельности, чело­век приводит в движение свои естественные орудия - руки, ноги, пальцы и пр. В орудиях же труда он приобретает новые искусственные органы, которые дополняют и удлиняют естественные органы тела, изменяя их строение. И сам человек «...в то же время изменяет свою собственную

природу». Следовательно, трудовые процессы оказывают значительные влияния на тело человека в целом, на его аппарат движения, включая и костную систему.

Особенно ярко отражается на скелете работа мышц . Как пока­зали экспериментальные исследования П. Ф. Лесгафта, чем силь­нее работа мышц, тем лучше раз­вивается кость, и обратно. В местах прикрепления сухожилий образуются выступы (бугры, отростки,

шероховатости), а на местах

Рис. 3. Рентгенограммы плюсневых костей.

места прикрепления мышц балерины (а) и работников сидячего труда (б).

прикрепления мышечных пучков - ровные или вогнутые поверхности (ямки).

ВЗАИМООТНОШЕНИЯ АКТИВНОЙ И ПАССИВНОЙ ЧАСТЕЙ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА

Чем сильнее развита муску­латура, тем лучше выражены на костях места прикрепления мышц. Вот почему рельеф кости, обуслов­ленный прикреплением мускула­туры, у взрослого выражен сильнее, чем у ребенка, у мужчин - силь­нее, чем у женщин.

Длительные и систематические сокращения мускулатуры, как это имеет место при физических упражнениях и профессиональной работе, постепенно вызывают через рефлекторные механизмы нервной системы изменение обмена веществ в кости, в результате чего получается увеличе­ние костного вещества, названное рабочей гипертрофией (рис. 3). Эта рабочая гипертрофия обусловливает изменения величины, формы и строения костей, легко определяемые рентгенологически на живых людях.

Различные профессии требуют различной физической работы, с чем связана разная степень участия тех или иных костей в данной работе.

Усиление физической нагрузки на аппарат движения вызывает рабочую гипертрофию костей, в результате чего меняются их форма, ширина и длина, а также толщина компактного вещества и размеры костномозгового пространства; меняется и структура губчатого ве­щества.

Ширина костей. Так, у грузчиков ширина костей по мере увеличения профессиональ­ного стажа достигает значительно больших размеров, нежели у представителей офисного труда.

Исследования П.Ф. Лесгафта выявили целый ряд закономерностей взаимоотношения активной и пассивной частей опорно-двигательного аппарата. Им было установлено:

1. Кости развиваются тем сильнее, чем больше деятельность окружающих их мышц; при меньшей нагрузке органов они становятся тоньше, длиннее, уже и слабее.

2. Форма костей меняется в зависимости от давления окружающих органов (мышц, кожи, глаз, зубов и т.д.), они утолщаются и направляются в сторону наименьшего сопротивления.

3. Форма кости изменяется также и от давления наружных частей, кость растет медленнее со стороны увеличенного внешнего давления, искривляясь под влиянием одностороннего действия.

4. Фасции – тонкие оболочки, покрывающие и разделяющие мышцы и находящиеся под их непосредственным влиянием, оказывают также боковое давление на кости.

5. Кости активны по отношению к форме своего строения (архитектуре), исполняют роль стоек или опор для окружающих органов.

ВЗАИМООТНОШЕНИЕ СОЦИАЛЬНОГО И БИОЛОГИЧЕСКОГО В СТРОЕНИИ КОСТЕЙ

Кость не является застывшей моделью, не меняющейся после своего сформирования, как считалось раньше. Такой метафизический взгляд преодолен современной анатомией, которая рассматривает жизнедеятельность кости даже у взрослого человека как непрекра­щающийся обмен веществ с другими тканями организма, как диалектическое единство и борьбу двух противоположных процессов - костеобразовательного и костеразрушительного (резорбционного; resorptio - рассасывание). В результате этой борьбы происходит постоянная смена структур кости и ее химического состава; так что, например, бедренная кость в течение 50 дней полностью обновляется. При этом кость подчиняется ряду биологи­ческих законов: приспособление (адаптация) к новым жизненным условиям, единство ор­ганизма и среды, единство формы и функции, изменчивость в результате упражнения или неупражнения, действие механического сдавления одной части на другую и пр. Морфологическим выражением этих законов применительно к скелету является пере­стройка структуры костей (костная перестройка) соответственно меняющимся функциональ­ным потребностям, о чем уже говорилось выше.

Такова вкратце «биологическая сторона» взаимоотношения социального и биологи­ческого. Что касается «социальной стороны», то здесь необходимо иметь в виду следую­щее.

Различные социальные факторы (профессия, образ жизни, характер питания и пр.) связаны с различной физической нагрузкой, от чего зависит разная степень участия тех или иных костей в данной работе. Труд работника-профессионала обусловливает длитель­ное пребывание тела в том или ином положении (например, согнутое положение над станком или письменным столом) или постоянное изменение положения тела в том или ином направ­лении (например, сгибание торса вперед и отбрасывание его назад у плотников). Поэтому характер профессиональной нагрузки и ее объем определяют большее или меньшее участие в работе данного отдела скелета и каждой кости в отдельности и обусловливают разный ха­рактер и степень перестройки ее структуры. При смене профессии наблюдается костная перестройка в сторону усиления или ослабления рабочей гипертрофии в зависимости от ха­рактера профессиональной нагрузки. Рост костей в длину усиливается при благоприятной физической нагрузке.

Старение костей наступает позже у рабочих, имеющих правильно организованный многолетний физический труд, который не вызывает преждевременной изнашиваемости костной ткани.

Изложенные факты индивидуальной изменчивости костной системы обусловлены как биологическими, так и социальными факторами. Раздражители внешней среды воспри­нимаются организмом биологически и приводят к перестройке скелета. Способность кост­ной ткани приспосабливаться к меняющимся функциональным потребностям путем кост­ной перестройки есть биологическая причина изменчивости костей, а характер профессии, объем профессиональной нагрузки, интенсивность труда, образ жизни данного человека и другие социальные моменты есть социальные причины этой изменчивости.

Таково взаимоотношение социального и биологического в строении скелета. Зная это взаимоотношение, можно направленно воздействовать на строение костной системы путем подбора соответствующих физических упражнений в труде и спорте и путем изменений со­циальных условий жизни.

Контрольные вопросы к лекции :

1. Рентгеноанатомия костей.

2. Зависимость развития кости от внутренних и внешних факторов.

3. Структурно-функциональные взаимоотношения активной и пассивной частей опорно-двигательного аппарата.

4. Роль русского ученого П.Ф. Лесгафта в изучении взаимозависимости мышечной и костной систем.

5. Взаимоотношения социального и биологического факторов в формировании скелета человека.

Лекция № 6

Общая артросиндесмология.

Цель лекции. Рассмотреть функциональные, анатомические особенности различных видов соединения костей.

план лекции:

1. Рассмотреть развитие соединений костей в филогенезе.

2. Рассмотреть классификацию соединения костей.

3. Раскрыть функциональную анатомию синдесмозов.

4. Раскрыть функциональную анатомию синхродрозов, синостозов, полусуставов.

5. Рассмотреть классификацию суставов по количеству суставных поверхностей и форме суставных поверхностей.

6. Рассмотреть классификацию суставов по количеству осей движения.

7. Рассмотреть общую характеристику комбинированных суставов и комплексных суставов.

8. Рассмотреть строение главных и вспомогательных элементов суставов.

9. Раскрыть основные закономерности биомеханики суставов.

10.Раскрыть функционально-морфологические особенности позвоночного столба как целого.

11.Раскрыть функционально-морфологические особенности таза как целого.

12. Раскрыть функционально-морфологические особенности стопы как целого.

РАЗВИТИЕ СОЕДИНЕНИЙ КОСТЕЙ В ФИЛОГЕНЕЗЕ

Первоначальной формой соединения костей является сращение их при помощи соединительной или (позднее) хрящевой ткани. Однако такой сплошной способ соединения костей ограничивает объем движений. С образованием костных рычагов движения в промежуточной между костями ткани вследствие рассасывания последней появляются щели и полости, в результате чего возник новый вид соединения костей - прерывный, сочленение. Кости стали не только соединяться, но и сочленяться, образовались суставы, позволившие костным рычагам производить обширные движения. Таким образом, в процессе филогенеза развилось 2 вида соединения костей: первоначальный – непрерывный, сплошной с ограниченным размахом движений и более поздний - прерывный, позволивший производить обширные движения. Отражая этот филогенетический процесс в эмбриогенезе человека развитие соединений костей проходит эти 2 стадии. Вначале зачатки скелета непрерывно связаны между собой прослойками мезенхимы. Последняя превращается в соединительную ткань, из которой образуется аппарат, связывающий кости. Если участки соединительной ткани, расположенные между костями, окажутся сплошными, то получится сплошное непрерывное соединение костей - сращение, иди синартроз. Если внутри них путем рассасывания соединительной ткани образуется полость, то возникает другой вид соединения - полостной, или прерывный, - диартроз.

Таким образом, по развитию, строению и функции все соединения костей можно разделить на 2 большие группы:
1. Непрерывные соединения - синартрозы (BNA) - более ранние по развитию, неподвижные или малоподвижные по функции.
2. Прерывные соединения - диартрозы (BNA) - более поздние по развитию и более подвижные по функции.

Между этими формами существует переходная - от непрерывных к прерывным или обратно. Она характеризуется наличием небольшой щели, не имеющей строения настоящей суставной полости, вследствие чего такую форму называютполусуставом - симфиз , symphysis (BNA).

(os) — это орган, являющийся компонентом системы органов опоры и движения, имеющий типичную форму и строение, характерную архитектонику сосудов и нервов, построенный преимущественно из костной ткани, покрытый снаружи надкостницей (periosteum) и содержащий внутри костный мозг (medulla osseum).

Каждая кость имеет определенную форму, величину и положение в теле человека. На формообразование костей существенное влияние оказывают условия, в которых кости развиваются, и функциональные нагрузки, которые кости испытывают в процессе жизнедеятельности организма. Каждой кости свойственно определенное число источников кровоснабжения (артерий), наличие определенных мест их локализации и характерная внутриорганная архитектоника сосудов. Указанные особенности распространяются и на нервы, иннервирующие данную кость.

В состав каждой кости входят несколько тканей, находящихся в определенных соотношениях, но, безусловно, основной является пластинчатая костная ткань. Рассмотрим ее строение на примере диафиза длинной трубчатой кости.

Основную часть диафиза трубчатой кости, расположенную между наружными и внутренними окружающими пластинками, составляют остеоны и вставочные пластинки (остаточные остеоны). Остеон, или гаверсова система, является структурно-функциональной единицей кости. Остеоны можно рассмотреть на шлифах или гистологических препаратах.



Внутреннее строение кости: 1 — костная ткань; 2 — остеон (реконструкция); 3 — продольный срез остеона

Остеон представлен концентрически расположенными костными пластинками (гаверсовыми), которые в виде цилиндров разного диаметра, вложенных друг в друга, окружают гаверсов канал. В последнем проходят кровеносные сосуды и нервы. Остеоны большей частью располагаются параллельно длиннику кости, многократно анастомозируя между собой. Количество остеонов индивидуально для каждой кости, у бедренной кости оно составляет 1,8 на 1 мм 2 . При этом на долю гаверсова канала приходится 0,2—0,3 мм 2 . Между остеонами располагаются вставочные, или промежуточные, пластинки, которые идут во всех направлениях. Вставочные пластинки представляют собой оставшиеся части подвергшихся разрушению старых остеонов. В костях постоянно происходят процессы новообразования и разрушения остеонов.

Снаружи кость окружают несколько слоев генеральных, или общих, пластинок, которые располагаются непосредственно под надкостницей (периостом). Через них проходят прободающие каналы (фолькмановские), которые содержат кровеносные сосуды того же названия. На границе с костномозговой полостью в трубчатых костях находится слой внутренних окружающих пластинок. Они пронизаны многочисленными каналами, расширяющимися в ячейки. Костномозговая полость выстлана эндостом, который представляет собой тонкий соединительнотканный слой, включающий уплощенные неактивные остеогенные клетки.

В костных пластинках, имеющих форму цилиндров, оссеиновые фибриллы плотно и параллельно прилежат друг к другу. Между концентрически лежащими костными пластинками остеонов находятся остеоциты. Отростки костных клеток, распространяясь по канальцам, проходят в направлении к отросткам соседних остеоцитов, вступают в межклеточные соединения, формируя пространственно ориентированную лакунарно-канальцевую систему, участвующую в метаболических процессах.

В составе остеона насчитывается до 20 и более концентрических костных пластинок. В канале остеона проходят 1-2 сосуда микроциркуляторного русла, безмиелиновые нервные волокна, лимфатические капилляры, сопровождаемые прослойками рыхлой соединительной ткани, содержащей остеогенные элементы, в том числе периваскулярные клетки и остеобласты. Каналы остеонов соединены между собой, с периостом и костномозговой полостью за счет прободающих каналов, что способствует анастомозированию сосудов кости в целом.

Снаружи кость покрыта надкостницей, образованной волокнистой соединительной тканью. В ней различают наружный (волокнистый) слой и внутренний (клеточный). В последнем локализуются камбиальные клетки-предшественники (преостеобласты). Основные функции периоста — защитная, трофическая (за счет проходящих здесь кровеносных сосудов) и участие в регенерации (благодаря наличию камбиальных клеток).

Надкостница покрывает кость снаружи, за исключением тех мест, где располагается суставной хрящ и прикрепляются сухожилия мышц или связки (на суставных поверхностях, буграх и бугристостях). Надкостница отграничивает кость от окружающих тканей. Она представляет собой тонкую прочную пленку, состоящую из плотной соединительной ткани, в которой располагаются кровеносные и лимфатические сосуды и нервы. Последние из надкостницы проникают в вещество кости.


Внешнее строение плечевой кости: 1 — проксимальный (верхний) эпифиз; 2 — диафиз (тело); 3 — дистальный (нижний) эпифиз; 4 — надкостница

Надкостница играет большую роль в развитии (росте в толщину) и питании кости. Ее внутренний остеогенный слой является местом образования костной ткани. Надкостница богато иннервирована, поэтому отличается высокой чувствительностью. Кость, лишенная надкостницы, становится нежизнеспособной, омертвевает. При оперативных вмешательствах на костях по поводу переломов надкостницу необходимо сохранять.

Практически у всех костей (за исключением большинства костей черепа) имеются суставные поверхности для сочленения с другими костями. Суставные поверхности покрыты не надкостницей, а суставным хрящом (cartilage articularis). Суставной хрящ по своему строению чаще является гиалиновым и реже — фиброзным.

Внутри большинства костей в ячейках между пластинками губчатого вещества или в костномозговой полости (cavitas medullaris) находится костный мозг. Он бывает красный и желтый. У плодов и новорожденных в костях содержится только красный (кроветворный) костный мозг. Он представляет собой однородную массу красного цвета, богатую кровеносными сосудами, форменными элементами крови и ретикулярной тканью. В красном костном мозге содержатся также костные клетки, остеоциты. Общее количество красного костного мозга составляет около 1500 см 3 . У взрослого человека костный мозг частично заменяется желтым, который в основном представлен жировыми клетками. Замене подлежит только костный мозг, расположенный в пределах костномозговой полости. Следует отметить, что изнутри костномозговая полость выстлана специальной оболочкой, получившей название эндоста (endosteum).

Учение о костях носит название остеология. Точное число костей указать нельзя, так как их количество изменяется с возрастом. В течение жизни образуется более 800 отдельных костных элементов, из них 270 появляются во внутриутробном периоде, остальные — после рождения. При этом большая часть отдельных костных элементов в детском и юношеском возрастах срастается между собой. Скелет у взрослого человека содержит только 206 костей. Кроме постоянных костей, в зрелом возрасте могут быть непостоянные (сесамовидные) кости, появление которых обусловлено индивидуальными особенностями строения и функций организма.











1 — череп; 2 — грудина; 3 — ключица; 4 — ребра; 5 — плечевая кость; 6 — локтевая кость; 7 — лучевая кость; 8 — кости кисти; 9 — тазовая кость; 10 — бедренная кость; 11 — надколенник; 12 — малоберцовая кость; 13 — большеберцовая кость; 14 — кости стопы 1 — теменная кость; 2 — затылочная кость; 3 — лопатка; 4 — плечевая кость; 5 — ребра; 6 — позвонки; 7 — кости предплечья; 8 — кости запястья; 9 — кости пясти; 10 - фаланги пальцев; 11 — бедренная кость; 12 — большеберцовая кость; 13 — малоберцовая кость; 14 — кости предплюсны; 15 - кости плюсны; 16 — фаланги пальцев

Кости вместе с их соединениями в организме человека составляют скелет. Под скелетом понимается комплекс плотных анатомических образований, выполняющих в жизнедеятельности организма преимущественно механические функции. Можно выделить твердый скелет, представленный костями, и мягкий скелет, представленный связками, мембранами и хрящевыми соединениями.

Отдельные кости и скелет человека в целом выполняют в организме различные функции. Кости туловища и нижних конечностей выполняют опорную функцию для мягких тканей (мышц, связок, фасций, внутренних органов). Большинство костей являются рычагами. К ним прикрепляются мышцы, которые обеспечивают локомоторную функцию (перемещение тела в пространстве). Обе названные функции позволяют назвать скелет пассивной частью опорно-двигательного аппарата.

Скелет человека является антигравитационной конструкцией, которая противодействует силе земного притяжения. Под воздействием последней тело человека прижимается к земле, скелет при этом препятствует изменению формы тела.

Кости черепа, туловища и тазовые кости выполняют функцию защиты от возможных повреждений для жизненно важных органов, крупных сосудов и нервных стволов. Так, череп является вместилищем для головного мозга, органа зрения, органа слуха и равновесия. В позвоночном канале располагается спинной мозг. Грудная клетка защищает сердце, легкие, крупные сосуды и нервные стволы. Тазовые кости предохраняют от повреждений прямую кишку, мочевой пузырь и внутренние половые органы.

Большинство костей содержит внутри красный костный мозг, который является органом кроветворения, а также органом иммунной системы организма. Кости при этом защищают красный костный мозг от повреждения, создают благоприятные условия для его трофики и созревания форменных элементов крови.

Кости принимают участие в минеральном обмене. В них депонируются многочисленные химические элементы, преимущественно соли кальция, фосфора. Так, при введении в организм радиоактивного кальция уже через сутки более половины этого вещества накапливается в костях.

Болезни суставов

Loading...Loading...