Лазерное излучение и защита от него на производстве. Положительное и негативное влияние лазерного излучения на организм человека

Лазерное излучение (ЛИ) - вынужденное испускание атомами вещества квантов электромагнитного излучения. Слово «лазер» - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulated emission of radiation (усиление света с помощью создания стимулированного излучения). Основными элементами любого лазера являются активная среда, источник энергии для ее возбуждения, зеркальный оптический резонатор и система охлаждения. ЛИ за счет монохроматичности и малой расходимости пучка способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять эти свойства для целей локации, навигации и связи.

Возможность создания лазерами исключительно высоких энергетических экспозиций позволяет использовать их для обработки различных материалов (резание, сверление, поверхностная закалка и др.).

При использовании в качестве активной среды различных веществ лазеры могут индуцировать излучение практически на всех длинах волн, начиная с ультрафиолетовых и заканчивая длинноволновыми инфракрасными.

Основными физическими величинами, характеризующими ЛИ, являются: длина волны (мкм), энергетическая освещенность (Вт/см 2), экспозиция (Дж/см 2), длительность импульса (с), длительность воздействия (с), частота повторения импульсов (Гц).

Биологическое действие лазерного излучения. Действие ЛИ на человека весьма сложно. Оно зависит от параметров ЛИ, прежде всего от длины волны, мощности (энергии) излучения, длительности воздействия, частоты следования импульсов, размеров облучаемой области («размерный эффект») и анатомо-физиологических особенностей облучаемой ткани (глаз, кожа). Поскольку органические молекулы, из которых состоит биологическая ткань, имеют широкий спектр абсорбируемых частот, то нет оснований считать, что монохроматичность ЛИ может создавать какие-либо специфические эффекты при взаимодействии с тканью. Пространственная когерентность также существенно не меняет механизма повреждений

излучением, так как явление теплопроводности в тканях и присущие глазу постоянные мелкие движения разрушают интерференционную картину уже при длительности воздействия, превышающей несколько микросекунд. Таким образом, ЛИ пропускается и поглощается биотканями по тем же законам, что и некогерентное, и не вызывает в тканях каких-либо специфических эффектов.

Энергия ЛИ, поглощенная тканями, преобразуется в другие виды энергии: тепловую, механическую, энергию фотохимических процессов, что может вызывать ряд эффектов: тепловой, ударный, светового давления и пр.

ЛИ представляют опасность для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38-0,7 мкм) и ближнего инфракрасного (0,75-1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18-0,38 мкм) и дальнее инфракрасное (более 1,4 мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужку, хрусталик. Достигая сетчатки, ЛИ фокусируется преломляющей системой глаза, при этом плотность мощности на сетчатке увеличивается в 1000-10000 раз по сравнению с плотностью мощности на роговице. Короткие импульсы (0,1 с-10 -14 с), которые генерируют лазеры, способны вызвать повреждение органа зрения за значительно более короткий промежуток времени, чем тот, который необходим для срабатывания защитных физиологических механизмов (мигательный рефлекс 0,1 с).

Вторым критическим органом к действию ЛИ являются кожные покровы. Взаимодействие лазерного излучения с кожными покровами зависит от длины волны и пигментации кожи. Отражающая способность кожных покровов в видимой области спектра высокая. ЛИ дальней инфракрасной области начинает сильно поглощаться кожными покровами, поскольку это излучение активно поглощается водой, которая составляет 80% содержимого большинства тканей; возникает опасность возникновения ожогов кожи.

Хроническое воздействие низкоэнергетического (на уровне или менее ПДУ ЛИ) рассеянного излучения может приводить к развитию неспецифических сдвигов в состоянии здоровья лиц, обслуживающих лазеры. При этом оно является своеобразным фактором риска развития невротических состояний и сердечно-сосудистых расстройств. Наиболее характерными клиническими синдромами, обнаруживаемыми у работающих с лазерами, являются астенический, астеновегетативный и вегетососудистая дистония.

Нормирование ЛИ. В процессе нормирования устанавливаются параметры поля ЛИ, отражающие специфику его взаимодействия с биологическими тканями, критерии вредного действия и числовые значения ПДУ нормируемых параметров.

Научно обоснованы два подхода к нормированию ЛИ: первый - по повреждающим эффектам тканей или органов, возникающим непосредственно в месте облучения; второй - на основе выявляемых функциональных и морфологических изменений ряда систем и органов, не подвергающихся непосредственному воздействию.

Гигиеническое нормирование основывается на критериях биологического действия, обусловленного, в первую очередь, областью электромагнитного спектра. В соответствии с этим диапазон ЛИ разделен на ряд областей:

От 0,18 до 0,38 мкм - ультрафиолетовая область;

От 0,38 до 0,75 мкм - видимая область;

От 0,75 до 1,4 мкм - ближняя инфракрасная область;

Свыше 1,4 мкм - дальняя инфракрасная область.

В основу установления величины ПДУ положен принцип определения минимальных «пороговых» повреждений в облучаемых тканях (сетчатка, роговица, глаза, кожа), определяемых современными методами исследования во время или после воздействия ЛИ. Нормируемыми параметрами являются энергетическая экспозиция Н (Дж-м -2) и облученность Е (Вт-м -2), а также энергия W (Дж) и мощность Р (Вт).

Данные экспериментальных и клинико-физиологических исследований свидетельствуют о превалирующем значении общих неспецифических реакций организма в ответ на хроническое воздействие низкоэнергетических уровней ЛИ по сравнению с местными локальными изменениями со стороны органа зрения и кожи. При этом ЛИ видимой области спектра вызывает сдвиги в функционировании эндокринной и иммунной систем, центральной и периферической нервной систем, белкового, углеводного и липидного обменов. ЛИ с длиной волны 0,514 мкм приводит к изменениям в деятельности сим- патоадреналовых и гипофизнадпочечниковых систем. Длительное хроническое действие ЛИ длиной волны 1,06 мкм вызывает вегетососудистые нарушения. Практически все исследователи, изучавшие состояние здоровья лиц, обслуживающих лазеры, подчеркивают более высокую частоту обнаружения у них астенических и вегетативно-сосудистых расстройств. Следовательно, низкоэнергетическое

ЛИ при хроническом действии выступает как фактор риска развития патологии, что и определяет необходимость учета этого фактора в гигиенических нормативах.

Первые ПДУ ЛИ в России для отдельных длин волн были установлены в 1972 г., а в 1991 г. введены в действие «Санитарные нормы и правила устройства и эксплуатации лазеров» СН и П? 5804. В США существует стандарт ANSI-z.136. Разработан также стандарт Международной электротехнической комиссией (МЭК) - Публикация 825. Отличительной особенностью отечественного документа по сравнению с зарубежными является регламентация значений ПДУ с учетом не только повреждающих эффектов глаз и кожи, но и функциональных изменений в организме.

Широкий диапазон длин волн, разнообразие параметров ЛИ и вызываемых биологических эффектов затрудняет задачу обосно- вания гигиенических нормативов. К тому же экспериментальная и особенно клиническая проверки требуют длительного времени и средств. Поэтому для разрешения задач по уточнению и разработке ПДУ ЛИ используют математическое моделирование. Это позволяет существенно уменьшить объем экспериментальных исследований на лабораторных животных. При создании математических моделей учитываются характер распределения энергии и абсорбционные характеристики облучаемой ткани.

Метод математического моделирования основных физических процессов (термический и гидродинамические эффекты, лазерный пробой и др.), приводящих к деструкции тканей глазного дна при воздействии ЛИ видимого и ближнего ИК диапазонов с длительностью импульсов от 1 до 10 -12 с, был использован при определении и уточнении ПДУ ЛИ, вошедших в последнюю редакцию «Санитарных норм и правил устройства и эксплуатации лазеров» СНиП? 5804- 91, которые разработаны на основании результатов научных исследований.

Действующие правила устанавливают:

Предельно допустимые уровни (ПДУ) лазерного излучения в диапазоне длин волн 180-10 6 нм при различных условиях воздействия на человека;

Классификацию лазеров по степени опасности генерируемого ими излучения;

Требования к производственным помещениям, размещению оборудования и организации рабочих мест;

Требования к персоналу;

Контроль за состоянием производственной среды;

Требования к применению средств защиты;

Требования к медицинскому контролю.

Степень опасности ЛИ для персонала положена в основу классификации лазеров, согласно которой они подразделяются на 4 класса:

1-й - класс (безопасные) - выходное излучение не опасно для глаз;

2-й - класс (малоопасные) - представляют опасность для глаз как прямое, так и зеркально отраженное излучения;

3-й - класс (среднеопасное) - представляет опасность для глаз также и диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности;

4-й - класс (высокоопасное) - представляет уже опасность и для кожи на расстоянии 10 см от диффузно отражающей поверхности.

Требования к методам, средствам измерений и контролю ЛИ. Дозиметрией ЛИ называют комплекс методов определения значений параметров лазерного излучения в заданной точке пространства с целью выявления степени опасности и вредности его для организма человека

Лазерная дозиметрия включает два основных раздела:

- расчетная, или теоретическая дозметрия, которая рассматривает методы расчета параметров ЛИ в зоне возможного нахождения операторов и приемы вычисления степени его опасности;

- экспериментальная дозиметрия, рассматривающая методы и средства непосредственного измерения параметров ЛИ в заданной точке пространства.

Средства измерений, предназначенные для дозиметрического контроля, называются лазерными дозиметрами. Дозиметрический контроль приобретает особое значение для оценки отраженных и рассеянных излучений, когда расчетные методы лазерной дозиметрии, основанные на данных выходных характеристик лазерных установок, дают весьма приближенные значения уровней ЛИ в заданной точке контроля. Использование расчетных методов диктуется отсутствием возможности провести измерение параметров ЛИ для всего разнообразия лазерной техники. Расчетный метод лазерной дозиметрии позволяет оценивать степень опасности излучения в заданной точке пространства, используя в расчетах паспортные данные. Расчетные методы удобны для случаев работы с редко повторяющимися кратковременными импульсами излучения, когда ограни-

чена возможность измерения максимального значения экспозиции. Они используются для определения лазерно-опасных зон, а также для классификации лазеров по степени опасности генерируемого ими излучения.

Методы дозиметрического контроля установлены в «Методических указаниях для органов и учреждений санитарно-эпидеми- ологических служб по проведению дозиметрического контроля и гигиенической оценке лазерного излучения» ? 5309-90, а также частично рассмотрены в «Санитарных нормах и правилах устройства и эксплуатации лазеров» СН и П? 5804-91.

В основе методов лазерной дозиметрии лежит принцип наибольшего риска, в соответствии с которым оценка степени опасности должна осуществляться для наихудших с точки зрения биологического воздействия условий облучения, т.е. измерение уровней лазерного облучения следует проводить при работе лазера в режиме максимальной отдачи мощности (энергии), определенной условиями эксплуатации. В процессе поиска и наведения измерительного прибора на объект излучения должно быть найдено такое положение, при котором регистрируются максимальные уровни ЛИ. При работе лазера в импульсно-периодическом режиме измеряют энергетические характеристики максимального импульса серии.

При гигиенической оценке лазерных установок требуется измерять не параметры излучения на выходе лазеров, а интенсивность облучения критических органов человека (глаза, кожа), влияющую на степень биологического действия. Эти измерения проводят в конкретных точках (зонах), в которых программой работы лазерной установки определено наличие обслуживающего персонала и в которых уровни отраженного или рассеянного ЛИ невозможно снизить до нуля.

Пределы измерений дозиметров определяются значениями ПДУ и техническими возможностями современной фотометрической аппаратуры. Все дозиметры должны быть аттестованы органами Госстандарта в установленном порядке. В России разработаны специальные средства измерений для дозиметрического контроля ЛИ - лазерные дозиметры. Они отличаются высокой универсальностью, заключающейся в возможности контроля как направленного, так и рассеянного непрерывного, моноимпульсного и импульсно- периодического излучений большинства применяемых на практике лазерных установок в промышленности, науке, медицине и пр.

Профилактика вредного действия лазерного излучения (ЛИ). Защиту от ЛИ осуществляют техническими, организационными и лечебнопрофилактическими методами и средствами. К методическим средствам относятся:

Выбор, планировка и внутренняя отделка помещений;

Рациональное размещение лазерных технологических установок;

Соблюдение порядка обслуживания установок;

Использование минимального уровня излучения для достижения поставленной цели;

Применение средств защиты. Организационные методы включают:

Ограничение времени воздействия излучения;

Назначение и инструктаж лиц, ответственных за организацию и проведение работ;

Ограничение допуска к проведению работ;

Организация надзора за режимом работ;

Четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;

Проведение инструктажа, наличие наглядных плакатов;

Обучение персонала.

Санитарно-гигиенические и лечебно-профилактические методы включают:

Контроль за уровнями опасных и вредных факторов на рабочих местах;

Контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

Производственные помещения, в которых эксплуатируются лазеры, должны отвечать требованиям действующих санитарных норм и правил. Лазерные установки размещают таким образом, чтобы уровни излучения на рабочих местах были минимальными.

Средства защиты от ЛИ должны обеспечивать предотвращение воздействия или снижение величины излучения до уровня, не превышающего допустимый. По характеру применения средства защиты подразделяются на средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Надежные и эффективные средства защиты способствуют повышению безопасности труда, снижают производственный травматизм и профессиональную заболеваемость.

Таблица 9.1. Защитные очки от лазерного излучения (выписка из ТУ 64-1-3470-84)

К СКЗ от ЛИ относятся: ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др.

СИЗ от лазерного излучения включают защитные очки (табл. 9.1), щитки, маски и др. Средства защиты применяются с учетом длины волны ЛИ, класса, типа, режима работы лазерной установки, характера выполняемой работы.

СКЗ должны предусматриваться на стадиях проектирования и монтажа лазеров (лазерных установок), при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производиться в зависимости от класса лазера (лазерной установки), интенсивности излучения в рабочей зоне, характера выполняемой работы. Показатели защитных свойств защиты не должны снижаться под воздействием других опасных

и вредных факторов (вибрации, температуры и т.д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.).

Средства индивидуальной защиты глаз и лица (защитные очки и щитки), снижающие интенсивность ЛИ до ПДУ, должны применять- ся только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.

При работе с лазерами должны применяться только такие средства защиты, на которые имеется нормативно-техническая документация, утвержденная в установленном порядке.

ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ – это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Слово «лазер» – аббревиатура, образованная из начальных букв английской фразы Light Amplification by Stimulated Emission of Radiation (усиление света с помощью индуцированного излучения). Следовательно, (оптический квантовый генератор) – это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Лазерная установка включает активную (лазерную) среду с оптическим резонатором, источник энергии ее возбуждения и, как правило, систему охлаждения. За счет монохроматичности лазерного луча и его малой расходимости (высокой степени коллиминированности) создаются исключительно высокие энергетические экспозиции, позволяющие получить локальный термоэффект. Это является основанием для использования лазерных установок при обработке материалов (резание, сверление, поверхностная закалка и др.), в хирургии и т. д.

Л. и. способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять это свойство для целей локации, навигации, связи и т. д. Путем подбора тех или иных веществ в качестве активной среды может индуцировать практически на всех длинах волн, начиная с ультрафиолетовых и кончая длинноволновыми инфракрасными. Наибольшее распространение в промышленности получили лазеры, генерирующие электромагнитные излучения с длиной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм.

Основные физические величины, характеризующие Л. и.:

длина волны, мкм;

применение средств защиты;

ограничение времени воздействия излучения;

назначение и лиц, ответственных за организацию и проведение работ;

ограничение допуска к проведению работ;

Надзора за режимом работ;

четкая противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;

Персонала.

Санитарно-гигиенические и лечебно-профилактические методы:

контроль за уровнями вредных и опасных факторов на рабочих местах;

контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

От Л. и. должны обеспечивать предотвращение воздействия излучения или снижение его величины до уровня, не превышающего допустимого. К СКЗ от Л. и. относятся: ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др. СИЗ от Л. и. включают: , щитки, маски и др. СКЗ должны предусматриваться на стадии проектирования и монтажа лазеров, при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производиться в зависимости от класса лазера, интенсивности излучения в рабочей зоне, характера выполняемой работы. Показатели защитных свойств средств защиты не должны снижаться под воздействием др. вредных и опасных факторов (вибрации, температуры и т. д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.). СИЗ глаз и лица ( и щитки), снижающие интенсивность Л. и. до ПДУ, должны применяться только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда СКЗ не обеспечивают персонала.

Лазерное излучение и защита от него на производстве

Лазерное излучение — это электромагнитные излучения с длиной волны 0,2...1000 мкм: от 0,2 до 0,4 мкм — ультрафиолетовая область; свыше 0,4 до 0,75 мкм — видимая область; свыше 0,75 до 1 мкм — ближняя инфракрасная область; свыше 1,4 мкм — дальняя инфракрасная область.


Источниками лазерного излучения являются оптические квантовые генераторы — лазеры, которые нашли широкое применение в науке, технике, технологии (связи, локации, измерительной технике, голографии, разделении изотопов, термоядерном синтезе, сварке, резке металлов и т.п.).


Лазерное излучение характеризуется исключительно высоким уровнем концентрации энергии: плотность энергии — 1010...1012 Дж/см3; плотность мощности — 1020..1022 Вт/см3. По виду излучения оно разделяется на прямое (заключенное в ограниченном телесном угле); рассеянное (рассеянное от вещества, находящегося в составе среды, сквозь которую проходит лазерный луч); зеркально отраженное (отраженное от поверхности под углом, равным углу падения луча); на диффузно отраженное (отражается от поверхности по всевозможным направлениям).


В процессе эксплуатации лазерных установок обслуживающий персонал может подвергнуться воздействию большой группы физических и химических факторов опасного и вредного воздействия. Наиболее характерными при обслуживании лазерной установки являются следующие факторы: а) лазерное излучение (прямое, рассеянное или отраженное); б) ультрафиолетовое излучение, источником которого являются импульсивные лампы накачки или кварцевые газоразрядные трубки; в) яркость света, излучаемого импульсивными лампами или материалом мишени под воздействием лазерного излучения; г) электромагнитные излучения диапазона ВЧ и СВЧ; д) инфракрасное излучение; ж) температура поверхностей оборудования; з) электрический ток цепей управления и источника питания; и) шум и вибрации; к) разрушение систем накачки лазера в результате взрыва; л) запыленность и загазованность воздуха, происходящие в результате воздействия лазерного излучения на мишень и радиолиза воздуха (выделяются озон, окислы азота и другие газы).


Одновременность воздействия этих факторов и степень их проявления зависят от конструкции, характеристики установки и особенностей выполняемых с ее помощью технологических операций. В зависимости от потенциальной опасности обслуживания лазерных установок они подразделены на четыре класса. Чем выше класс установки, тем выше опасность воздействия излучения на персонал и тем большее число факторов опасного и вредного воздействия проявляется одновременно.


Если для 1-го класса опасности лазерной установки обычно характерна лишь опасность воздействия электрического поля, то для 2-го класса характерна еще и опасность прямого и зеркального отраженного излучения; для 3-го класса — еще и опасность диффузного отражения, ультрафиолетового и инфракрасного излучения, яркости света, высокой температуры, шума, вибраций, запыленности и загазованности воздуха рабочей зоны.


Лазерная установка 4-го класса опасности характеризуется полным наличием потенциальных опасностей, перечисленных выше.


В качестве основных критериев для нормирования лазерных излучений избрана степень изменения, происходящего под их влиянием в органах зрения и кожи человека. Безопасность при работе с лазерами оценивается вероятностью достижения того или иного патологического эффекта, определяемой:

Рбез = 1 - Рпат (3.47)

где Рбез — вероятность безопасности работы с лазером в конкретных условиях; РПат — фактический патологический эффект, измеренный при воздействии лазерного излучения.


В настоящее время доказано, что при воздействии лазерного излучения (особенно при разовом) существует однозначная связь между количественным показателем интенсивности воздействия поля и производимым им эффектом.


В целях обеспечения безопасных условий труда персонала установлены предельно допустимые уровни (ПДУ) лазерного излучения, которые при ежедневном воздействии на человека не вызывают в процессе работы или в отдаленные сроки отклонений в состоянии здоровья, обнаруживаемых современными методами медицинских исследований.

1 — лазер, 2 — бленда, 3 — линза, 4 — диафрагма, 5 — мишень


Биологические эффекты воздействия лазерного излучения зависят не только от энергетической экспозиции, поэтому ПДУ лазерного излучения установлены с учетом длины волны излучения, длительности импульсов, частоты их повторения, времени воздействия и площади облучаемых участков, а также от биологических и физико-химических особенностей облучаемых тканей и органов.


Контроль уровней опасных и вредных факторов при эксплуатации лазеров проводится периодически (не реже одного раза в год), при приеме новых установок, при изменении конструкции лазерной установки или средств защиты, при организации новых рабочих мест.


В зависимости от класса лазерной установки используются различные защитные средства, включающие порядок эксплуатации установки, определенные «Санитарными нормами и правилами устройства и эксплуатации лазеров».


Комплекс мер, обеспечивающих безопасность работы с лазером, включает технические, санитарно-гигиенические и организационные мероприятия и направлен на предотвращение облучения персонала уровнями, превышающими ПДУ.


Достигается это обеспечением лазеров приспособлениями, исключающими воздействие прямого и отраженного излучения (экраны); использованием средств дистанционного управления, сигнализации и автоматического отключения; созданием специальных помещений для работ с лазером, их правильной компоновкой с обеспечением необходимого свободного пространства, систем контроля уровней облучения; оборудованием рабочих мест местной вытяжной вентиляцией.


В качестве экранирующих устройств от прямого и отраженного излучения на пути луча устанавливают бленды, а возле облучаемого объекта — диафрагмы.


К обслуживанию лазеров допускаются лица не моложе 18 лет, не имеющие медицинских противопоказаний, прошедшие инструктаж и обученные безопасным методам работы (имеют соответствующую квалификационную группу по технике безопасности).


В процессе эксплуатации установок на администрацию возложены обязанности контроля за безопасным ведением работ, а также предотвращение использования запрещенных приемов работ.


К средствам индивидуальной защиты от лазерного излучения, используемым только в комплексе со средствами коллективной защиты, относятся защитные очки и маски со светофильтрами.


Их выбор в каждом конкретном случае осуществляется с учетом длины волны генерируемого излучения.

Новейшие достижения квантовой электроники привнесли в ряд технологических процессов новый мощный вид излучения- лазерное излучение, вызываемое оптическими квантовыми генераторами (ОКГ) -лазерами (название это составлено из начальных букв английского полного наименования: Light amplification by stimulated Emission of Radiation», что означает «усиление света путем стимулированного излучения»). Приборы эти трансформируют один из видов энергии - электрическую, световую, тепловую, химическую - в монохроматическое когерентное излучение электромагнитных волн (ультрафиолетовое, видимое, инфракрасное) высокой частоты.

Источники лазерного излучения нашли применение при обработке высокопрочных жаростойких материалов, сплавов, для сверления, резки, сварки при сверхвысоком давлении, для калибровки в радиотехнической промышленности, для изготовления матриц с микроотверстиями в текстильной промышленности, в системе связи, в приборостроении, при исследованиях в биологии, медицине и других областях науки.

Основной частью лазера, его излучателем является активная среда - твердая (кристаллы и стекла с добавками ионов хрома, неодима, эрбия и др.), жидкая, газообразная или плазменная, в которой генерируется и накапливается электромагнитная энергия. Помещается эта среда в систему из двух параллельных зеркал - резонатор.

Существуют квантовые генераторы: газовые или ионовые (для возбуждения применяется электрический заряд); лазеры с оптической накачкой на кристаллы, стекло, жидкость и пластмассы; лазеры полупроводниковые; лазеры на органических красителях.

Принцип действия ОКГ основан на использовании вынужденного (стимулированного) электромагнитного излучения некоего рабочего вещества (твердое тело, жидкость, газ), т. е. излучения, возникшего в результате действия на него внешнего источника энергии - энергии «накачки». Таким источником могут быть яркие лампы-вспышки для твердого рабочего вещества и постоянное или переменное электрическое поле для газообразного рабочего вещества.

В зависимости от длины волны излучения различают лазеры в ультрафиолетовом, инфракрасном и видимом диапазоне спектра. В зависимости от энергетических параметров системы накачки действие генератора может быть импульсным или непрерывным. Важной особенностью импульсного режима излучения является большая мощность кратковременных импульсов, достигающая нескольких мегаватт при продолжительности импульса от долей секунды до нескольких миллисекунд; при непрерывном режиме мощность не превышает нескольких милливатт.

При воздействии на организм лазерного излучения большой интенсивности наиболее типичным является термический эффект. При этом в облученных тканях происходит быстрый нагрев структур, адсорбировавших энергию; жидкость, окружающая эти структуры, абсорбирует энергию и мгновенно вскипает. Вследствие этого резко повышается давление, возникает ударная волна, усиливающая термический эффект лазерного излучения, происходит механическая травма ткани (разрыв ее).

Таким образом, лазерное излучение приводит к сочетанному термическому и механическому действию. Наряду с этим специфическое влияние лазерного излучения сказывается в изменении генетических, ферментативных и других свойств ткани, некоторых составных частей крови (гамма-глобулины и др.). В основе механизма действия лежат процессы, связанные с избирательным поглощением тканями электромагнитной энергии, а также электрическим и фотометрическим эффектом. Лазерное излучение видимыми, инфракрасными и ультрафиолетовыми лучами воздействует на специальные образования организма - фото- и терморецепторы.

Местный эффект лазерного излучения проявляется главным образом в повреждающем действии тканей глаза. Характер изменений зависит от величины энергии и длины волны лазерного излучения, диаметра луча, расстояния глаза от источника излучения, диаметра зрачка и др. У лиц, длительно работающих в условиях лазерного излучения, наблюдается точечное помутнение хрусталика, изменение глазного дна, снижение темновой адаптации.

Общие изменения в организме под влиянием лазерного излучения многообразны. Изменения зависят от термического (фокусированный пучок выделяет значительное количество тепла за короткий отрезок времени в малом объеме), электрического (высокий градиент электрического поля), фотохимического, механического и фотогидравлического действия (при фокусировке на поверхности или вблизи тела в жидкости - вскипание ее и взрыв).

Небольшой интенсивности излучение вызывает функциональные изменения центральной нервной системы, сердечно-сосудистой системы, эндокринных желез и др. Как правило, эти изменения носят обратимый характер и чаще наблюдаются при облучении монохроматическими когерентными лучами видимой части спектра. После многократного лазерного облучения надолго удерживаются изменения сердечно-сосудистой системы.

Условия труда на лазерных установках . Основной неблагоприятный с гигиенической точки зрения фактор - это отраженное монохроматическое излучение лазера. Возможно как прямое зеркальное отражение (с выхода прибора), так и рассеянное излучение различными промежуточными элементами и мишенями (при пробивке отверстий и других операциях, связанных с лазерным излучением). Чрезмерным раздражителем органа зрения оказывается и свет ламп «накачки».

Серьезную опасность для органа зрения представляет инфракрасное излучение лазера при значительной плотности энергии (0,07 Дж/см 2). При этом происходит разрушение или снижение активности некоторых энзимов и вследствие этого - помутнение хрусталика.

Неблагоприятное действие может оказать шум при настройке генератора ОКГ, достигающий 95-100 дБ и имеющий частоту 1000-1250 Гц, звуковые импульсы- хлопки, число которых достигает нескольких сотен при громкости 100-120 дБ. При разрядах импульсных ламп накачки образуется озон, при обработке металла лучами лазера, когда происходит переход из твердого состояния в парообразное с выбиванием струи пара со сверхзвуковой скоростью, выделяется мелкодисперсный аэрозоль.

При выборе помещения для лазерных установок (ОКГ) обязательно участие промышленно-санитарного надзора. Для предотвращения возможного поражения прямым или отраженным потоком лазерного излучения в помещении не следует размещать какие-либо другие зеркальные поверхности. Особое внимание следует обратить на защиту глаз соответствующими очками-светофильтрами.

Лазерное излучение представляет собой электромагнитные колебания (электромагнитные волны) оптического диапазона, источником которых являются оптические квантовые генераторы (ОКГ) - лазеры.

В них используются способы усиления и генерирования электромагнитных колебаний, основанные на принципе индуцирования излучения в атомах и молекулах активной среды (например, смеси газов гелия и неона, помещенной в специальное устройство -зеркальный резонатор).

С принципами генерации лазерного излучения связаны его основные свойства: монохроматичность (излучение лазером электромагнитных колебаний практически одной длины волны); когерентность (упорядоченность распределения фазы лазерного излучения как во времени, так и в пространстве); поляризация (упорядоченность в ориентации векторов напряженности электрических и магнитных полей световой волны в плоскости, перпендикулярной световому лучу); направленность (малая расходимость лазерного излучения).

Совокупность этих свойств обусловливает технические преимущества лазерного излучения: возможность локального равномерного облучения в широком диапазоне интенсивности светового потока; более высокая точность дозирования (по сравнению с традиционно применяемыми в физиотерапии источниками света); использование волоконной оптики и специализированного световодного инструмента для подведения энергии лазерного излучения к патологическим очагам при их внутриполостной локализации.

Лазерное излучение проникает в ткани организма на глубину от 1-20 мкм (УФ-диапазон) до 2-3 мм (красный диапазон) и до 50-70 мм (ближний ИК-диапазон спектра длин волн). При поглощении энергии лазерного излучения, наряду с местной реакцией облученных поверхностных тканей (расширение сосудов микроциркуляторного русла, фазовые изменения локального кровотока и др.), формируются рефлекторные реакции (внутренних органов и окружающих зону воздействия тканей), а также генерализованные реакции целостного организма (активация желез внутренней секреции, гуморального иммунитета, репаративных процессов в нервной, мышечной и костной тканях и др.).

Аппараты. Для физиотерапевтических целей используют различные лазерные аппараты на основе газовых (гелий-неоновых) лазеров типа «ЛГН-207», «ЛГН-208», «ЛГ-75» или полупроводниковых (арсенид-галлиевых) лазеров типа «ЛПИ-101(102)», «ИЛПН-108» и др.

Эти аппараты обеспечивают генерацию лазерного излучения красного (0,63 мкм) и ближнего ИК-диапазона (0,8-1,3 мкм) спектра длин волн в непрерывном (прерывистом) и в импульсном режимах. Отечественная промышленность выпускает более 50 наименований лазерных физиотерапевтических аппаратов и установок, типичными представителями каждой разновидности которых являются следующие.

Аппарат «Мустанг»

Аппарат «Мустанг» (модели 016, 017, 022) представляет собой (рис. 344) портативное устройство, состоящее из базового блока (питания и управления) и сменных выносных излучателей, генерирующих лазерное излучение в импульсном и непрерывном режимах.

Импульсная мощность излучения 0,89 мкм-5-80 Вт; максимальная мощность непрерывного излучения 0,83 мкм - 30 мВт; непрерывного излучения 0,63-0,67 мкм - 4-12 мВт. На передней панели аппарата базового блока расположены органы управления: кнопка «Сеть», кнопки «Частота», «Время», ручка «Мощность», окно фотоприемника и индикатор излучения.


Рис. 344. Схема панели управления аппарата «Мустанг»: 1 - выключатель питания, 2 - кнопки задания частоты повторения импульсов, 3 - кнопки задания времени экспозиции, 4 - ручка регулировки мощности, 5 - кнопка «Пуск», 6 - окно фотоприемника, 7 - индикатор мощности, 8 - кнопка включения биорежима, 9 - светодиод «Пульс» 10 - светодиод «Дыхание»


Включение аппарата.
1. Подключить одну или две излучающие головки (выносные излучатели) к разъему на задней панели базового блока. 2. Включить сетевую вилку в сетевую розетку. 3. Включить на панели аппарата кнопку «Сеть», при этом загораются светодиоды «Частота», «Время».

4. Убедиться в исправности аппарата, для чего поднести излучатель к окну фотоприемника, перевести ручку «Мощность» в крайнее левое положение и нажать кнопку «Пуск», при этом загорается светодиод «Раб.» и линейка светодиодов индикатора (в некоторых моделях - цифровое значение импульсной мощности).

5. Вращая ручку «Мощность» вправо, убедиться в возможности настройки аппарата на необходимую импульсную мощность излучения, после чего выключить излучение повторным нажатием кнопки «Пуск». 6. При подготовке лечебной процедуры по пп. 4 и 5 с помощью ручки «Мощность» (по индикатору мощности) установить нужную импульсную мощность излучения, затем при выключенном излучении нажатием кнопок «Частота» и «Время» задать необходимую частоту следования импульсов и время процедуры. 7. Для осуществления лазерного воздействия нажать кнопку «Пуск».

Выключение аппарата. 1 . Лазерное излучение прекращается автоматически по прошествии заданного времени процедуры. При работе аппарата без таймера (т. с. при нажатой кнопке «Н») излучение выключают повторным нажатием кнопки «Пуск». 2. Для выключения аппарата нажать кнопку «Сеть» и вынуть вилку сетевого шнура из сетевой розетки.

Магнито-инфракрасно-лазерный терапевтический аппарат

Магнито-инфракрасно-лазерный терапевтический аппарат (сокр. «МИЛТА-Ф-01») предназначен для лечения заболеваний широкого профиля путем сочетанного или раздельного воздействия на пораженные области постоянным магнитным полем, импульсным лазерным и непрерывным светодиодным излучением ифракрасного диапазона, а также для диагностики патологического процесса сравнением уровней сигналов, отраженных от контрлатеральных областей больного.

Одним из существенных преимуществ аппарата по сравнению с аналогами является то, что он имеет фоторегистратор. Последний даст возможность уточнить дозу облучения больного в зависимости от тяжести заболевания и скоррегировать ее в ходе лечения.

Магнитная индукция на оси магнита колеблется от 20 до 80 мТл. Максимальная суммарная мощность излучения светодиодов на выходе терминала равна не мене 120 мВт, максимальная плотность мощности - не менее 22 мВт/см2. Средняя мощность излучения лазера на выходе терминала составляет не менее 2 мВт при частоте повторения 5 кГц, максимальное значение средней плотности мощности - не менее 0,4 мВт/см2.

Аппарат обеспечивает световую индикацию включения, контроль частоты повторения лазерных импульсов при внутреннем запуске лазера, цикла работы лазера, светоцифровую индикацию отраженного излучения светодиодов.

На корпусе аппарата размещены кнопки: «Сеть», «Частота», «Таймер», «Пуск» и «Стоп». Сам аппарат выполнен в виде настольной конструкции, включающей пульт питания (1), терминал (2), неразъемный электрошнур (3), сетевой кабель с вилкой (4). Общий вид аппарата представлен на рис. 345. На лицевой стороне аппарата расположены: кнопка включения (5), индикаторный диод включения (6), кнопка переключения режимов работы (7), индикаторные диоды режимов работы (8), индикаторные диоды частоты лазерного излучения (9), цифровое табло (10), кнопки установки параметров (11), корпус терминала (12), гайка терминала (13), кнопка «Пуск» («Ray») (14), дно ложа терминала (15).



Рис. 345. Схематическое изображение магнито-инфракрасно-лазерного аппарата «Милта-Ф-01» (объяснение в тексте)
Рис. 346. Схема терминала аппарата «МИЛТА-Ф-01» (объяснение в тексте)


Терминал представляет выносную часть аппарата, посредством которой осуществляется запуск лазера и светодиодов. Им обеспечивается непосредственное воздействие на больного. Терминал (рис. 346) включает корпус (1), неразъемный электрошнур (2), постоянный кольцевой магнит (3), гайку терминала (4), кнопку «Пуск» (5), индикаторный диод включения лазера (6).

Дно ложа терминала является диффузным отражателем для ИК-излучения. Встроенный фоторегистратор обеспечивает светоцифровую индикацию облучения больного непрерывным излучением свстодиодов и выдаст цифровые данные о мощности излучения.

В аппарате предусмотрена звуковая, световая и светоцифровая индикация. Индикаторный светодиод указывает на работу лазера; цифры на табло (10) говорят о работе четырех светодиодов в непрерывном режиме излучения. Восемь зеленых индикаторных диодов указывают на выбранную частоту повторения импульсов излучения.

Звуковой сигнал возникает при нажатии кнопки (5) и длится ис менее 0,5 с. При этом зажигаются все индикаторные светодиоды. Прекращение звука говорит о готовности аппарата к работе. Длительность экспозиции устанавливается кнопками (11) в режиме «Время» по показаниям цифрового табло.

Принцип лечебной работы аппарата основан на сочетанном и раздельном воздействии на больного постоянным магнитным полем, импульсным лазерным и непрерывным светодиодным излучениями ближнего ИК-диапазона оптического центра. При этом фоторегистратор позволяет фиксировать наличие и уровень отраженного излучения от тела больного или от дна ложа терминала.

Для лечения определенных заболевании к аппарату придаются различные насадки. Для лечения болезней шейки матки «МИЛТЛ-Ф» имеет насадку № 1, влагалища - № 2, заболевания влагалища и прямой кишки - № 3, ЛОР-болезней - № 4, стоматологических заболеваний - № 5, для рефлексотерапии аппарат имеет насадку № 6.

Перед началом работы аппарат следует проверить на: 1. исправность сетевого шнура и кабеля терминала, 2. целостность терминала, 3. наличие звуковой сигнализации при включении в есть и по окончании работы лазера, 4. свечение индикатора, 5. наличие свечения цифровых индикаторов и светоиндикаторов на блоке питания. При работе с лазером следует руководствоваться приказом Минздрава РФ от 14.03.96 г. № 90 и ГОСТ 12.4.026-76.

Аппарат «Мулат»

Аппарат «Мулат» предназначен для нсинвазивного и внутрисосудистого облучения крови лазерным излучением красного диапазона длин волн (рис. 347).



Рис. 347. Общий вид аппарата «Мулат»: 1 - базовый блок, 2 - оптический выход лазерного излучателя, 3 - кнопка выбора внутреннего (внешнего) фотоприемника, 4 - окно внешнего фотоприемника, 5 - кнопка «Вкл./Выкл.», 6 - индикатор мощности излучения, 8 - кнопка «Пуск», 9 - ручка регулировки мощности излучения, 10 - магистральный световод


Источником излучения 0,63 мкм является полупроводниковый лазер с мощностью излучения на оптическом выходе лазера не менее 4 мВт. На передней панели базового блока расположены органы управления: кнопка «Вкл./ Выкл.», индикатор мощности излучения, кнопки задания времени процедуры «Время», кнопка «Пуск», ручка регулировки мощности излучения «Мощность», кнопка выбора внутреннего (внешнего) фотоприемника «Фотопр.», окно внешнего фотоприемника. Для осуществления наружных и внутрисосудистых облучений к оптическому выходу лазерного излучателя подключается магистральный световод.

Включение аппарата. 1. Включить вилку сетевого шнура в сетевую розетку, затем перевести кнопку сетевого выключателя в положение «Вкл.», при этом загораются светодиоды «Внутр.» 5 мин; на индикаторе мощности излучения высвечивается 0,0 мВт. 2. Перевести ручку «Мощность» в крайнее левое положение и нажать кнопку «Пуск», при этом раздастся звуковой сигнал и загорается светодиод «Раб.».

3. Вращать ручку «Мощность» вправо, при этом индикатор мощности излучения показывает соответствующее значение этого параметра на оптическом выходе лазера. 4. Перевести ручку «Мощность» в крайнее левое положение и нажать кнопку «Фотопр.», при этом загорается евстодиод «Внешн.».

5. Поднести выход магистрального евстодиода вплотную к окну внешнего фото-приемника, затем вращать ручку «Мощность» вправо, при этом индикатор мощности показывает соответствующее значение этого параметра на выходе магистрального световода - аппарат исправен. 6. Выключить излучение повторным нажатием кнопки «Пуск», при этом раздастся звуковой сигнал.

7. При подготовке лечебной процедуры по пп. 2-5 с помощью ручки «Мощность» (по индикатору мощности) установить нужную выходную мощность лазерного излучения. 8. Нажатием кнопки «Время» задать необходимую продолжительность процедуры. 9. Для осуществления лазерного воздействия нажать кнопку «Пуск».

Выключение аппарата. 1. Лазерное излучение прекращается автоматически по истечении заданного времени процедуры. При необходимости излучение можно выключить в процессе процедуры повторным нажатием кнопки «Пуск». При этом раздастся звуковой сигнал. 2. Перевести кнопку сетевого выключателя в положение «Выкл.» и вынуть вилку сетевого шнура из сетевой розетки.

Боголюбов В.М., Васильева М.Ф., Воробьев М.Г.

Loading...Loading...