На тему искусственные органы. Искусственные органы. Базовая технология выращивания органов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АО «Медицинский университет Астана»

Кафедра медбиофизики и ОБЖ

Реферат

На тему: Искусственные органы

Выполнила: Нурпеисова Д.

Группа:144 ОМ

Проверила: Масликова Е.И.

Астана 2015 год

Введение

1. Искусственная почка

2. Искусственное сердце

3. Искусственный кишечник

4. Искусственная кожа

5. Искусственная кровь

6. Искусственное лёгкое

7. Искусственные кости

Заключение

Список использованной литературы

Введение

Быстрое развитие медицинских технологий и все более активное использование в них последних достижений смежных наук позволяют сегодня решать такие задачи, которые еще несколько лет назад казались невыполнимыми. В том числе - и в области создания искусственных органов, способных все более успешно заменять свои природные прототипы.

Причем самое удивительное в этом то, что подобные факты, еще несколько лет назад способные стать основой для сценария очередного голливудского блокбастера, сегодня привлекают внимание публики всего на несколько дней. Вывод вполне очевиден: не за горами тот день, когда даже самые фантастичные идеи относительно возможностей замены природных органов и систем их искусственными аналогами перестанут быть некой абстракцией. А значит, однажды могут появиться и люди, у которых подобных имплантов окажется больше, чем собственных частей тела.

Пересадка органов воплощает извечное стремление людей научиться "ремонтировать" человеческий организм.

1. Искусственная почка

Один из самых необходимых искусственных органов -- это почка. В настоящее время сотни тысяч людей в мире для того, чтобы жить, должны регулярно получать лечение гемодиализом. Беспрецедентная « машинная агрессия», необходимость соблюдать диету, принимать медикаменты, ограничивать прием жидкости, потеря работоспособности, свободы, комфорта и различные осложнения со стороны внутренних органов сопровождают эту терапию.В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор -- сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960-х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата -- смеси солей, концентрация которых в 30-34 раза превышала концентрацию их в крови больного.

В 2010 году в США был разработан имплантируемый в организм больного гемодиализный аппарат. Аппарат, разработанный в Калифорнийском университете в Сан-Франциско имеет размеры в целом соответствующие размеру человеческой почки. Имплантат, помимо традиционной системы микрофильтров, содержит биореактор с культурой клеток почечных канальцев, способных выполнять метаболические функции почки. Прибор не требует энергообеспечения и работает за счёт давления крови пациента. Данный биореактор имитирует принцип работы почки за счёт того, что культура клеток почечных канальцев находится на полимерном носителе и обеспечивает обратную реабсорбцию воды и полезных веществ, так же как это происходит в норме. Это позволяет значительно повысить эффективность диализа и даже полностью отказаться от необходимости трансплантации донорской почки.

Гемодиализатор

Иначе, искусственная почка - аппарат для временного замещения выделительной функции почек. Искусственную почку используют для освобождения крови от продуктов обмена, коррекции электролитно-водного и кислотно-щелочного балансов при острой и хронической почечной недостаточности, а также для выведения диализирующихся токсических веществ при отравлениях и избытка воды при отёках.

Функция

Основная функция очищение крови от различных токсичных веществ, в том числе продуктов метаболизма. При этом объём крови в пределе организма остаётся постоянным.

2. Искусственное сердце

Сердце - полый мышечный орган. Его масса у взрослого человека составляет 250-300 грамм. Сокращаясь, сердце работает как насос, проталкивая кровь по сосудам и обеспечивая её непрерывное движение. При остановке сердца наступает смерть, потому что прекращается доставка тканям питательных веществ, а так же освобождение тканей от продуктов распада.

От созд ания «сердца» до нашего времени.

Создателем искусственного сердца был В. П. Демихов еще в 1937 г. С течением времени это устройство претерпело колоссальные преобразования в размерах и способах использования Искусственное сердце - механический прибор, который временно берет на себя функцию кровообращения, в случае если сердце пациента не может полноценно обеспечивать организм достаточным количеством крови. Существенным его недостатком является потребность в постоянной подзарядке от электросети.

В 2009 году еще не было создано эффективного имплантируемого человеку протеза всего сердца. Ряд ведущих кардиохирургических клиник проводит успешные частичные замены органических компонентов на искусственные. По состоянию на 2010 год существуют прототипы эффективных имплантируемый искусственно человеку протезов всего сердца. искусственный протез имплантируемый

В настоящее время протез сердца рассматриваются как временная мера позволяющая пациенту с тяжелой сердечной патологией дожить до момента пересадки сердца.

Модель сердца .

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия. Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается -- и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца. Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции. В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке наружный сервис компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома, с больным блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного -- следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

3. Искусственная кожа

Стадия разработки: исследователи на пороге создания настоящей кожи

Созданная в 1996 году искусственная кожа используется для пересадки пациентам, чей кожных покров был сильно поврежден сильными ожогами. Метод состоит в связывании коллагена, полученного из хрящей животных, с гликозаминогликаном (ГАГ) для развития модели внеклеточной матрицы, которая создает основание для новой кожи. В 2001 году на основе этого метода была создана самовосстанавливающаяся искусственная кожа.

Еще одним прорывом в области создания искусственной кожи стала разработка английских ученых, которые открыли удивительный метод регенерации кожи. Созданные в лабораторных условиях клетки, генерирующие коллаген, воспроизводят реальные клетки человеческого организма, которые не дают коже стареть. С возрастом количество этих клеток уменьшается, и кожа начинает покрываться морщинами. Искусственные клетки, введенные непосредственно в морщины, начинают вырабатывать коллаген и кожа начинает восстанавливаться.

В 2010 году - Ученые из университета Гранады создали искусственную человеческую кожу при помощи тканевой инженерии на основе арагозо-фибринного биоматериала.

Искусственная кожа была привита мышам и показала оптимальные результаты в плане развития, мейоза и функциональности. Это открытие позволит найти ей клиническое применение, а также применение в лабораторных тестах на тканях, что, в свою очередь, позволит избежать использования лабораторных животных. Более того, открытие может быть использовано при разработке новых подходов к лечению кожных патологий.

Исследование проводил Хосе Мария Хименес Родригес (Jose Maria Jimenez Rodriguez) из исследовательской группы тканевой инженерии при факультете гистологии Университета Гранады под руководством профессоров Мигеля Аламиноса Мингоранса (Miguel Alaminos Mingorance), Антонио Кампоса Муноса (Antonio Campos Munoz) и Хосе Мигеля Лабрадор Молина (Jose Miguel Labrador Molina).

Исследователи сначала выбрали клетки, которые впоследствии должны были быть использованы для создания искусственной кожи. Затем проанализировали развитие культуры в лабораторных условиях и в конце концов провели контроль качества путем прививания тканей мышам. С этой целью были разработаны несколько техник иммунофлуоресцентной микроскопии. Они позволили ученым оценить такие факторы как клеточная пролиферация, наличие маркеров морфологической дифференциации, экспрессия цитокреатина, инволюкрина и филагрина; ангиогенез и рост искусственной кожи в организме реципиента.

Для экспериментов исследователи взяли небольшие части человеческой кожи путем биопсии у пациентов после пластических операций в больнице University Hospital Virgen de las Nieves в Гранаде. Естественно, с согласия пациентов.

Для создания искусственной кожи был использован человеческий фибрин из плазмы здоровых доноров. Затем исследователи добавили транексамовую кислоту (для предотвращения фибринолиза), хлорид кальция (для предотвращения коагуляции фибрина) и 0,1% арагозы (aragose). Эти заменители были привиты на спины голых мышей с целью наблюдения их развития в естественных условиях.

Кожа, созданная в лаборатории, показала хороший уровень биосовместимости. Отторжения, расхождения или инфекции обнаружено не было. Плюс кожа на всех животных в исследовании проявила грануляцию через шесть дней после имплантации. Рубцевание завершилось в следующие двадцать дней.

Эксперимент, проведенный в Университете Гранады стал первым в ходе которого искусственная кожа была создана с дермой на основе арагозо-фибринного биоматериала. До сих пор использовались другие биоматериалы вроде коллагена, фибрина, полигликолиевой кислоты, хитозана и т.д.

4. Искусственный кишечник

В 2006 году английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения.

Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Тогда была впервые в истории проведена работа, которая демонстрировала, как плюрипотентные стволовые клетки человека в чашке Петри могут быть собраны в ткань организма с трехмерной архитектурой и типом связей, свойственных естественно развившейся плоти.

Искусственная кишечная ткань может стать терапевтическим средством №1 для людей, страдающих некротическим энтероколитом, воспалением кишечника и синдромом короткого кишечника.

В ходе исследований группа ученых под руководством доктора Джеймса Уэллса использовала два типа плюрипотентных клеток: эмбриональные человеческие стволовые клетки и индуцированные, полученные путем перепрограммирования клеток человеческой кожи.

Эмбриональные клетки называют плюрипотентными, потому что они способны превращаться в любой из 200 различных типов клеток человеческого организма. Индуцированные клетки подходят для «причесывания» генотипа конкретного донора, без риска дальнейшего отторжения и связанных с этим осложнений. Это новое изобретение науки, поэтому пока неясно, обладают ли индуцированные клетки взрослого организма тем же потенциалом, что и клетки зародыша.

Искусственная ткань кишечника была «выпущена» в двух видах, собранная из двух разных типов стволовых клеток.

Чтобы превратить отдельные клетки в ткань кишечника, потребовалось много времени и сил. Ученые собирали ткань, используя химикаты, а также белки, которые называют факторами роста. В пробирке живое вещество росло так же, как и в развивающемся эмбрионе человека. Сначала получается так называемая эндодерма, из которой вырастают пищевод, желудок, кишки и легкие, а также поджелудочная железа и печень. Но медики дали команду эндодерме развиться только лишь в первичные клетки кишечника. На их рост до ощутимых результатов потребовалось 28 дней. Ткань созрела и обрела абсорбционную и секреторную функциональность, свойственную здоровому пищеварительному тракту человека. В ней также появились и специфические стволовые клетки, с которыми теперь работать будет значительно легче.

5. Искусственная кр овь

Доноров крови всегда не хватает -клиники обеспечены препаратами крови всего на 40 % от нормы. Для проведения одной операции на сердце с использованием системы искусственного обращения требуется кровь 10 доноров. Есть вероятность, что проблему поможет решить искусственная кровь - ее, как конструктор, уже начали собирать ученые. Созданы синтетические плазма, эритроциты и тромбоциты.

Создание «крови»

Плазма - один из основных компонентов крови, ее жидкая часть. «Пластиковая плазма», созданная в университете Шеффилда (Великобритания), может выполнять все функции настоящей и абсолютно безопасна для организма. В ее состав входят химические вещества, способные переносить кислород и питательные вещества. На сегодняшний день искусственная плазма предназначена для спасения жизни в экстремальных ситуациях, но в ближайшем будущем ее можно будет использовать повсеместно.

Что ж, впечатляет. Хотя и немного страшновато представить, что внутри тебя течет жидкий пластик, точнее, пластиковая плазма. Ведь чтобы стать кровью, ее еще нужно наполнить эритроцитами, лейкоцитами, тромбоцитами. Помочь британским коллегам с «кровавым конструктором» решили специалисты из Калифорнийского университета (США). Они разработали полностью синтетические эритроциты из полимеров, способные переносить кислород и питательные вещества от легких к органам и тканям и обратно, то есть выполнять основную функцию настоящих красных кровяных клеток. Кроме того, они могут доставлять к клеткам лекарственные препараты. Ученые уверены, что в ближайшие годы завершатся все клинические испытания искусственных эритроцитов, и их можно будет применять для переливания. Правда, предварительно разбавив их в плазме - хоть в естественной, хоть в синтетической.

Не желая отставать от калифорнийских коллег, искусственные тромбоциты разработали ученые из университета Case Western Reserve штата Огайо. Если быть точным, то это не совсем тромбоциты, а их синтетические помощники, тоже состоящие из полимерного материала. Их главная задача - создать эффективную среду для склеивания тромбоцитов, что необходимо для остановки кровотечения. Сейчас в клиниках для этого используют тромбоцитарную массу, но ее получение - дело кропотливое и довольно долгое. Нужно найти доноров, произвести строгий отбор тромбоцитов, которые к тому же хранятся не более 5 суток и подвержены бактериальным инфекциям. Появление искусственных тромбоцитов снимает все эти проблемы. Так что изобретение станет хорошим помощником и позволит врачам не бояться кровотечений.

Настоящая или искусственная кровь. Что лучше?

Термин «искусственная кровь» немного неточен. Настоящая кровь выполняет большое количество задач. Искусственная кровь пока может выполнять только некоторые из них Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине.

Искусственная кровь выполняет две основные функции:

1) увеличивает объем кровяных телец

2) выполняет функции обогащения кислородом.

В то время как вещество, увеличивающее объем кровяных телец, уже давно используется в больницах, кислородная терапия пока находится в стадии разработки и клинических исследований.

Предполагаемые достоинства и недостатки искусственной крови

Достоинство Недостатки

отсутствие риска заражения вирусами побочные эффекты

совместимость с любой группой крови токсичность

при переливании

производство в лабораторных условиях дороговизна

относительная лёгкость хранения

6. Искусственное легкое

Американские ученые из Йельского университета под руководством Лауры Никласон совершили прорыв: им удалось создать искусственное легкое и пересадить его крысам. Также отдельно было создано легкое, работающее автономно и имитирующее работу настоящего органа

Надо сказать, что человеческое легкое представляет собой сложный механизм. Площадь поверхности одного легкого у взрослого человека составляет около 70 квадратных метров, собранных так, чтобы обеспечивать эффективный перенос кислорода и углекислого газа между кровью и воздухом. Но ткань легкого трудно восстанавливать, поэтому на данный момент единственный способ заменить поврежденные участки органа - пересадка. Данная процедура весьма рискованна в виду высокого процента отторжений. Согласно статистике, через десять лет после трансплантации в живых остаются лишь 10-20% пациентов.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40--50 раз в минуту. Обычный поршень для этого не подходит, в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь, и в других подобных устройствах используют мехи из гофрированного металла или пластика -- сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

7. Искусственные кости

Медики из Империал колледжа в Лондоне утверждают, что им удалось изготовить костный материал, который наиболее похож по своему составу на настоящие кости и имеет минимальные шансы на отторжение. Новые искусственные костные материалы фактически состоят сразу из трех химических соединений, которые симулируют работу настоящих клеток костной ткани.

Медики и специалисты по протезированию по всему миру сейчас ведут разработки новых материалов, которые могли бы послужить полноценной заменой костной ткани в организме человека.

Впрочем, на сегодня ученые создали лишь подобные костям материалы, пересаживать которые вместо настоящих костей, пусть и сломанных, до сих пор не доводилось. Основная проблема таких псевдо-костных материалов заключается в том, что организм их не распознает как «родные» костные ткани и не приживается к ним. В итоге, в организме пациента с пересаженными костями могут начаться масштабные процессы отторжения, что в худшем варианте может даже привести к масштабному сбою в иммунной системе и смерти пациента.

Мозговые протезы

Мозговые протезы -- очень сложная, однако выполнимая задача. Уже сегодня возможно внедрение в человеческий мозг специального чипа, который будет отвечать за кратковременную память и пространственные ощущения. Такой чип станет незаменимым элементом для индивидуумов, страждущих на нейродегенеративные недуги. Мозговые протезы пока еще только тестируются, однако результаты исследований показывают, что человечество имеет все шансы на замену частей мозга в будущем.

Искусственные руки.

Искусственные руки в XIX в. разделялись на «рабочие руки» и «руки косметические», или предметы роскоши.

Для каменщика или чернорабочего ограничивались наложением на предплечье или плечо бандажа из кожаной гильзы с арматурой, к которой прикреплялся соответствующий профессии рабочего инструмент -- клещи, кольцо, крючок и т. п.

Косметические искусственные руки, смотря по занятиям, образу жизни, степени образования и другим условиям, бывали более или менее сложны. Искусственная рука могла иметь форму естественной, в изящной лайковой перчатке, способная производить тонкие работы; писать и даже тасовать карты (как известная рука генерала Давыдова).

Если ампутация не достигла локтевого сустава, то при помощи искусственной руки возможно было возвратить функцию верхней конечности; но если ампутировано верхнее плечо, то работа рукой была возможна лишь через посредство объемистых, весьма сложных и требующих большого усилия аппаратов.

Помимо последних, искусственные верхние конечности состояли из двух кожаных или металлических гильз для верхнего плеча и предплечья, которые над локтевым суставом были подвижно соединены в шарнирах посредством металлических шин. Кисть былa сделана из легкого дерева и неподвижно прикреплена к предплечью или же подвижна. В суставах каждого пальца находились пружины; от концов пальцев идут кишечные струны, которые соединялись позади кистевого сустава и продолжались в виде двух более крепких шнурков, причем один, пройдя по валикам через локтевой сустав, прикреплялся на верхнем плече к пружине, другой же, также двигаясь на блоке, свободно оканчивался ушком. Если желают при вытянутом плече сохранить пальцы сжатыми, то это ушко вешают на пуговку, имеющуюся на верхнем плече. При произвольном сгибании локтевого сустава пальцы смыкались в этом аппарате и совершенно закрывались, если плечо согнуто под прямым углом.

Для заказов искусственных рук достаточно было указать меры длины и объема культи, а равно и здоровой руки, и объяснить технику цели, которым они должны служить.

Протезы для рук должны обладать всеми нужными свойствами, к примеру, функцией закрытия и открытия кисти, удержания и выпускание из рук любой вещи, и у протеза должен быть вид, который как можно точнее копирует утраченную конечность. Существуют активные и пассивные протезы рук.

Пассивные только копируют внешний вид руки, а активные, которые делятся на биоэлектрические и механические, выполняют гораздо больше функций. Механическая кисть довольно точно копирует настоящую руку, так что любой человек с ампутацией сможет расслабиться среди людей, а также сможет брать предмет и выпускать его. Бандаж, который крепится на плечевом поясе, приводит кисть в движение.

Биоэлектрический протез работает благодаря электродам, считывающим ток, который вырабатывается мускулами во время сокращения, сигнал передаётся на микропроцессор и протез движется.

Искусственные ноги

Для человека с физическим повреждением нижних конечностей, конечно же, важны качественные протезы для ног.

Именно от уровня ампутации конечности и будет зависеть правильный выбор протеза, который заменит и сможет даже восстановить множество функций, которые были свойственны конечности.

Существуют протезы для людей, как молодых, так и пожилых, а также для детей, спортсменов, и тех, кто, несмотря на ампутацию, ведёт такую же активную жизнь. Протез высокого класса состоит из системы стоп, коленных шарниров, адаптеров, сделанных из материала высокого класса и повышенной прочности. Обычно при выборе протеза обращают самое пристальное внимание на будущие физические нагрузки пациента и на вес его тела.

С помощью высококачественного протеза человек сможет жить, как и прежде, практически не ощущая неудобств, и даже выполнять ремонт в доме, закупать кровельные материалы и делать другие виды силовых работ.

Чаще всего все отдельные детали протеза делают из самых прочных материалов, к примеру, из титана или легированной стали.

Если человек весит до 75 кг, то ему подбирают более лёгкие протезы из других сплавов. Существуют небольшие модули, специально разработанные для детей от 2 до 12 лет. Для многих людей с ампутацией стало настоящим спасением появление протезно - ортопедических компаний, которые выполняют протезы под заказ для рук и ног, изготавливают корсеты, стельки, ортопедические аппараты.

Заключение

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы -- вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

Таким образом, искусственные органы имеют огромное значение в современной медицине.

Список использованной литературы

1. Искусственная почка и её клиническое применение, М., 1961; Fritz К. W., Hдmodialyse, Stuttg., 1966..

2. Буреш Я. Электрофизиологические методы исследования. Медиина. М., 1973.

3. Трансплантация органов и тканей в многопрофильном научном центре, Москва, 2011, 420 стр. под ред. М.Ш. Хубутия.

4. Отторжение трансплантированного сердца. Москва, 2005, 240 стр. Соавторы: В. И. Шумаков и О. П. Шевченко.

5. . Галлетти П. М., Бричер Г. А., Основы и техника экстракорпорального кровообращения, пер. с англ., М., 1966

Размещено на Allbest.ru

Подобные документы

    Создание искусственных органов как одно из важных направлений современной медицины. Значение выбора материалов, адекватного поставленной цели инженерного решения. Искусственные кровь, кровеносные сосуды, кишечник, сердце, кости, матка, кожа, конечности.

    презентация , добавлен 14.03.2013

    Заболевание вен нижних конечностей. Венозные дисплазии, варикозное расширение вен нижних конечностей, острый тромбофлебит поверхностных вен, острые тромбозы глубоких вен нижних конечностей. Посттромбофлебитический синдром, тромбоэмболия легочной артерии.

    реферат , добавлен 15.03.2009

    Протезы, в которых соединение отдельных частей производится бюгелем. Фиксация протеза в полости рта. Бюгельные протезы на телескопических коронках. 5 типов опорно-удерживающих кламмеров. Отличия бюгельных протезов от других видов съемных конструкций.

    презентация , добавлен 14.11.2016

    Изучение съемных протезов, таких как пластмассовые пластинчатые протезы, пластмассовые пластинчатые иммедиатпротезы, бюгельные протезы, съемные сектора, сегменты зубных рядов. Протезы на телескопических коронках. Уход за пластиночным съемным протезом.

    контрольная работа , добавлен 17.11.2010

    Топографические особенности полости рта при полном отсутствии зубов, подвижность и податливость. Рассмотрение основных методов постановки искусственных зубов. Описание припасовки и наложения протезов. Изготовление съемных протезов с мягкой подкладкой.

    презентация , добавлен 11.12.2014

    Изучение источников и особенностей применения стволовых клеток. Исследование технологии выращивания искусственных органов на основе стволовых клеток. Преимущества биологического принтера. Характеристика механических и электрических искусственных органов.

    презентация , добавлен 20.04.2016

    Одно из важных направлений современной медицины - создание искусственных органов. Искусственное сердце, легкие (оксигенаторы), почка (гемодиализ). Технические устройства: гемооксигенераторы, кардиопротезы. Кардиостимуляторы. Кардиовертер-дифибриллятор.

    презентация , добавлен 08.05.2015

    Обзор и сравнительная характеристика искусственных клапанов. Механические искусственные клапаны. Дисковые и двухстворчатые механические искусственные клапаны сердца. Искусственное сердце и желудочки, их характеристика, принцип работы и особенности.

    реферат , добавлен 16.01.2009

    Клинические проявления варикозного расширения вен нижних конечностей, симптомы. Пигментация кожи, вторичный экзематозный дерматит и трофические язвы. Венозная гипертензия, несостоятельность прямых перфорантных вен и дисфункция мышечно-венозной помпы.

    реферат , добавлен 15.03.2009

    Хронические облитерирующие заболевания артерий нижних конечностей как врожденные или приобретенные нарушения проходимости артерий в виде стеноза или окклюзии. Хроническая ишемия тканей нижних конечностей различной выраженности и изменения в клетках.

- 87.07 Кб

Карагандинский Государственный Медицинский Университет

Кафедра медицинской биофизики и информатики

Тема: Искусственные органы.

Выполнила: Кан Лилия 142 ОМ

Проверил: Коршуков И.В.

Караганда 2012

  1. Введение.
  2. Искусственные легкие (оксигенаторы).
  3. Искусственная почка (гемодиализ).
  4. Искусственное сердце.
  5. Кардиостимуляторы.
  6. Биологические протезы. Искусственные суставы.
  7. Заключение.

Введение.

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Ученые по всему миру все чаще задумывались над созданием искусственных органов, которые могли бы заменить настоящие по своим функциям, и в этом направлении были достигнуты определенные успехи. Нам известны искусственные почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные импланты.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые выполняют функции оперируемых органов, позволяют на время приостановить их работу.

Искусственные легкие (оксигенаторы).

Оксигенатором называют газообменное одноразовое устройство, которое предназначается для удаления из крови углекислоты и насыщения ее кислородом. Оксигенатор используют при проведении кардиохирургических операций, или же с целью улучшить в организме больного кровообращение, если больной страдает от заболеваний легких или сердца, содержание кислорода в крови при которых сильно понижается.

Недостатками прямоточных пузырьковых оксигенаторов являются сильный поток кислорода и связанный с этим гемолиз, а также вспенивание и последующий переход в жидкое состояние всего объема крови, проходящего через оксигенатор. Кислород, поступающий в кровь из нижней части пузырькового оксигенатора противоточного типа, создает пенный столб (экран), навстречу которому из верхней части оксигенатора стекает венозная кровь. Этот принцип более экономичен и эффективен. Расход кислорода и количество крови существенно меньше, чем в прямоточных оксигенаторах. Из-за вспенивания небольшой части притекающей венозной крови меньше травмируются форменные элементы крови. Недостатком указанных оксигенаторов является сложность управления, обусловленная необходимостью постоянного наличия пенного столба. Оксигенаторами указанного типа снабжены различные модификации отечественных АИК.

Пленочные оксигенаторы.

Как свидетельствует название этих устройств, оксигенация происходит при контакте пленки крови, образовавшейся на какой-либо твердой поверхности, с кислородом. Различают стационарные и ротационные пленочные оксигенаторы. В стационарных оксигенаторах кровь стекает по неподвижным экранам, которые находятся в атмосфере кислорода. Примером служит оксигенатор Гиббона, с помощью которого была проведена первая успешная операция на сердце с искусственным кровообращением.Главными недостатками экранных оксигенаторов являются их дороговизна, плохая управляемость, громоздкость конструкции и необходимость большого количества донорской крови. Более эффективны ротационные оксигенаторы. К ним относятся популярные в прошлом дисковый оксигенатор Кея - Кросса и цилиндровый оксигенатор Крафорда - Сеннинга. Пленка крови, образующаяся на поверхности вращающихся дисков или цилиндров, контактирует с кислородом, подаваемым в оксигенатор. Производительность ротационных оксигенаторов в отличие от экранных может быть увеличена за счет повышения скорости вращения дисков (цилиндров). Рассмотренные пленочные и пузырьковые оксигенаторы многоразового пользования имеют исторический интерес. На смену им пришли оксигенаторы одноразового пользования в комплекте с теплообменником, артериальным и венозным резервуарами, специальной «антифомной» (силикон) секцией внутри оксигенатора, газовыми и жидкостными фильтрами, набором канюль и катетеров. Наибольшей популярностью пользуются оксигенаторы фирм «Bentley» (США), «Harvey» (США), «Shiley» (США), «Polystan» (Дания), «Gambro» (Швеция) и др. Эти оксигенаторы полностью удовлетворяют запросы современной кардиохирургии и кардиоанестезиологии. Но если необходима длительная (более 4 ч) искусственная оксигенация крови, то вредное действие прямого контакта крови с кислородом и углекислым газом становится небезразличным для организма. Антифизиологичность этого феномена проявляется изменением электрокинетических сил, нарушением нормальной конфигурации молекул белков и их денатурацией, агрегацией тромбоцитов, выбросом кининов и т.д. Во избежание этого при длительных перфузиях более целесообразно пользоваться мембранными оксигенаторами.

Искусственная почка (гемодиализ).

Почки - жизненно важный орган, без которого человек не может жить.
Резкое нарушение функций почек у человека в короткое время может привести к смерти. Потому что организм больного теряет способность очищаться естественным путем. Токсины и прочие вредные вещества не удаляются, а накапливаются в организме, что грозит общим отравлением, в организме происходят необратимые изменения и спасти больного уже нельзя.

Гемодиализ - это механическое очищение крови от отходов, солей и жидкостей, необходимое пациентам, почки которых недостаточно здоровы для выполнения этой работы.

Гемодиализ проводят с помощью аппарата искусственной почки. В основе его работы лежат принципы диализа, позволяющего удалить из плазмы крови вещества с небольшой молекулярной массой (электролиты, мочевину, креатинин, мочевую кислоту и др.), и частично ультрафильтрации, с помощью которой выводятся избыток воды и токсические вещества с более высокой молекулярной массой.

Среди многих моделей аппаратов искусственной почки выделяют два основных типа: аппараты с целлофановой мембраной, имеющей форму трубки диаметром 25-35 мм, и аппараты с пластинчатой целлофановой мембраной.

Наиболее широко за рубежом применяют двухкатушечную искусственную почку Колффа-Уочингера. Преимуществом этой модели является то, что катушки с намотанными целлофановыми шлангами поступают с завода в стерильном состоянии и при надобности могут быть немедленно использованы. Простота установки и обращения, значительная диализирующая поверхность создали большую популярность этой модели. Недостатки аппарата - большая емкость по крови и значительное сопротивление току крови из-за тугой обмотки двух диализирующих шлангов.Поэтому на входе в диализатор устанавливается насос.

Советская модель искусственной почки относится к типу диализаторов с пластинчатой целлофановой мембраной.
Большой клинический опыт советских и зарубежных клиницистов показывает высокую эффективность гемодиализа в лечении больных почечной недостаточностью.

Присоединяют аппарат к больному вено-венозным или артериовенозным способом. При необходимости многократного применения Г. пациенту имплантируют наружный артериовенозный шунт или накладывают подкожное соустье между артерией и веной. С помощью монитора осуществляют контроль и регуляцию химического состава, рН, давления и температуры диализирующего раствора, скорости его прохождения, давления крови в аппарате и др. Длительность гемодиализа 5-6 ч.

Схема советской модели искусственной почки:

1 - катетер; 2 - насос по крови; 3 - диализатор; 4 - измеритель производительности; 5 - воздухоуловитель; 6 - фильтр; 7 - катетер возврата крови больному; 8 - нагреватель; 9 - насос по диализирующей жидкости; 10 - бак для диализирующего раствора; 11 - ротаметр по кислороду; 12 - ротаметр по углекислоте; 13 - гидропривод перфузионного насоса.

Кровь от больного поступает по катетеру (1) при помощи насоса (2) в диализатор (3). Проходя между целлофановыми пластинками последнего (по каждой из его 11 секций), кровь больного через целлофановую пластинку соприкасается с протекающим навстречу диализирующим раствором. Состав его обычно стандартный и содержит все основные ионы крови (К·, Na·, Са··, Mg·, Cl·, НСO 3) и глюкозу в концентрациях, необходимых для коррекции электролитного состава крови больного. После диализатора кровь поступает в измеритель производительности (4), где улавливаются сгустки крови и воздух. Дальше кровь по катетеру возвращается в венозную систему больного. Диализирующий раствор при помощи автоматического нагревателя (8) доводят до t° 38° и насыщают карбогеном с таким расчетом, чтобы рН его составляла 7,4. При помощи насоса (9) диализирующий раствор подается в диализатор. Скорость кровотока в диализаторе обычно равна 250-300 мл/мин.

Применение искусственной почки по строгим показаниям с выполнением всех мер предосторожности и при тщательном наблюдении за больным во время диализа и после него практически безопасно и не грозит какими-либо осложнениями.

Искусственное сердце.

Искусственное сердце - технологическое устройство, предназначенное для поддержания достаточных для жизнедеятельности параметров гемодинамики.

На данный момент под искусственным сердцем понимается две группы технических устройств.

  • К первой относятся гемооксигенаторы, по-другому аппараты искусственного кровообращения. Они состоят из артериального насоса, перекачивающего кровь, и блока оксигенатора, который насыщает кровь кислородом. Данное оборудование активно используется в кардиохирургии, при проведении операций на сердце.
  • Ко второй относятся кардиопротезы, технические устройства, имплантируемые в организм человека, призванные заменить сердечную мышцу и повысить качество жизни больного. В настоящее время данные устройства являются лишь экспериментальными и проходят клинические испытания.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия. Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается - и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца. Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» это «Новакор». С ней можно целый год ждать операции. В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке наружный сервис компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома, с больным блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного - следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Кардиостимуляторы.

Кардиостимулятор - медицинский прибор, предназначенный для воздействия на ритм сердца. Основной задачей кардиостимулятора (водителя ритма) является поддержание или навязывание частоты сердечных сокращений пациенту, у которого сердце бьётся недостаточно часто, или имеется электрофизиологическое разобщение между предсердиями и желудочками (атриовентрикулярная блокада).

Показания к применению:

  • Аритмия сердца
  • Синдром слабости синусового узла
  • Атриовентрикулярная блокада

Кардиостимулятор представляет собой прибор в герметичном металлическом корпусе небольшого размера. В корпусе располагается батарея и микропроцессорный блок. Все современные стимуляторы воспринимают собственную электрическую активность (ритм) сердца, и если возникает пауза, либо иное нарушение ритма/проводимости в течение определенного времени, прибор начинает генерировать импульсы для стимуляции миокарда. В противном случае - при наличии адекватного собственного ритма - кардиостимулятор импульсы не генерирует. Эта функция называется «по требованию» или «on demand».

Описание работы

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Post Views: 36


Одно из важных направлений современной медицины – создание искусственных органов. Искусственные органы – это созданные человеком органы-имплантанты, которые могут заменить настоящие органы тела. Несмотря на то что практически все экспериментальные «модели» находятся в разработке, похоже, что вскоре ученые создадут настоящего человека из искусственных органов.

Искусственная матка. Стадия разработки: успешно созданные прототипы Ученые уже давно работают над созданием искусственной матки, чтобы эмбрионы могли развиваться вне женских репродуктивных органов. Прототипы создавались учеными на основе клеток, выделенных из организма женщины. Специалисты утверждают, что в самое ближайшее время будет создана полноценная искусственная матка.Новая разработка в будущем позволит женщинам, страдающим от бесплодия, иметь детей. Противники новой технологии утверждают, что разработка ученых может в будущем ослабить связь матери и ребенка. Создание искусственной матки также поднимает этические вопросы о возможном клонировании человека и даже о введении запрета на аборты, поскольку эмбрион сможет выжить и в искусственной матке.Искусственный кишечник. Стадия разработки: успешно создан В прошлом году английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения.Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.Искусственное сердце. Стадия разработки: успешно создано, готово к имплантации Первые искусственные сердца появились еще в 60-х годах прошлого века. Однако полноценное, полностью имплантируемое искусственно сердце появилось не так давно. Так называемое «временное» сердце Total Artificial Heart создано специально для пациентов, страдающих от нарушений сердечной деятельности. Этот орган поддерживает работу организма и фактически продлевает жизнь пациенту, который находится в ожидании органа для полноценной трансплантации. Первое «временное сердце» было имплантировано в 2007 году бывшему инструктору по фитнесу.Искусственная кровь. Стадия разработки: кислородная терапия Термин «искусственная кровь» немного неточен. Настоящая кровь выполняет большое количество задач. Искусственная кровь пока может выполнять только некоторые из них Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине.Искусственная кровь выполняет две основные функции: 1) увеличивает объем кровяных телец 2) выполняет функции обогащения кислородом. В то время как вещество, увеличивающее объем кровяных телец, уже давно используется в больницах, кислородная терапия пока находится в стадии разработки и клинических исследований.Несмотря на определенные трудности в исследованиях, ученые утверждают, что уже в самые ближайшие годы будет создана полноценная искусственная кровь. Если это произойдет, то по вкладу в развитие науки это открытие будет сравнимо разве что с возможным полетом человека на Марс.

Искусственные кровеносные сосуды. Стадия разработки: подготовка экспериментов на людях
Ученые недавно разработали искусственные кровеносные сосуды, используя коллаген, выделяемый из шкуры…лосося. Использования коллагена из лосося абсолютно безопасно, поскольку современная наука не знает ни одного вируса, который способен передаваться от лосося человеку (в отличие от коллагена, выделяемого из шкур коров, использование которого было признано небезопасным из-за возможности заражения коровьим бешенством). Пока эксперименты проводятся на животных, однако ученые готовятся к экспериментам на людях. Исследователи уверены, что созданные ими биоматериалы можно будет использовать для замены поврежденных кровеносных сосудов человека.

Искусственные кости. Стадия разработки: проводятся клинические исследования

Ученые довольно давно занимаются проблемой создания искусственных костей. Недавно было обнаружено, что лимонная кислота в сочетание с октандиолом (нетоксичным химикатом) создает вещество желтого цвета, похожее на резину, которому можно придать любую форму и заменить им поврежденную часть кости. Полученный полимер, смешанный с гидроапатитовым порошком, в свою очередь «превращается» в очень твердый материал, который можно использовать для восстановления сломанных костей.Технология, вне всяких сомнений, является весьма перспективной, однако ученым ее предстоит стадия экспериментов на людях.Искусственная кожа. Стадия разработки: исследователи на пороге создания настоящей кожи Созданная в 1996 году искусственная кожа используется для пересадки пациентам, чей кожных покров был сильно поврежден сильными ожогами. Метод состоит в связывании коллагена, полученного из хрящей животных, с гликозаминогликаном (ГАГ) для развития модели внеклеточной матрицы, которая создает основание для новой кожи. В 2001 году на основе этого метода была создана самовосстанавливающаяся искусственная кожа.Еще одним прорывом в области создания искусственной кожи стала разработка английских ученых, которые открыли удивительный метод регенерации кожи. Созданные в лабораторных условиях клетки, генерирующие коллаген, воспроизводят реальные клетки человеческого организма, которые не дают коже стареть. С возрастом количество этих клеток уменьшается, и кожа начинает покрываться морщинами. Искусственные клетки, введенные непосредственно в морщины, начинают вырабатывать коллаген и кожа начинает восстанавливаться.
Искусственная сетчатка. Стадия разработки: создана и успешно прошла тестирования, находится на стадии промышленного производства Искусственная сетчатка Argus II в скором времени будет лечить людей, страдающих от различных форм слепоты, таких как дегенерация желтого пятна и пигментная дегенерация сетчатки. Дегенерация желтого пятна – это атрофия или дегенерация диска зрительного нерва, расположенного вблизи центра сетчатки. Является распространенной причиной потери зрения, особенно среди людей старшего возраста. Различают два типа возрастной дегенерации желтого пятна. Сухая форма характеризуется пигментной дистрофией эпителия и чаще всего приводит к медленно прогрессирующей частичной потере зрения. Влажная форма быстро прогрессирует и приводит к слепоте. Пигментная дегенерация сетчатки – редкое наследственное заболевание, связанное с нарушением работы и выживанием палочек, фоторецепторов сетчатки, отвечающих за периферическое черно-белое сумеречное зрение. Колбочки – другой вид фоторецепторов, отвечающих за центральное дневное цветное зрение. Колбочки вовлекаются в дегенеративный процесс вторично. Признаками пигментной дегенерации сетчатки являются: плохое зрение в сумерках на оба глаза, частые спотыкания и столкновения с окружающими объектами в условиях пониженной освещенности, постепенное сужение периферического поля зрения, быстрая утомляемость глаз.
Искусственные конечности. Стадия разработки: эксперименты Как известно, саламандры могут регенерировать оторванные конечности. Почему бы людям не последовать их примеру? Недавно проведенные исследования подарили людям с ампутированными конечностями надежду на возможную регенерацию утраченных частей тела. Ученые успешно вырастили новые конечности на саламандре, используя экстракт из мочевого пузыря свиньи. Исследователи находятся на самой ранней стадии развития новой технологии, которая только будет разработана – до ее применения на людях еще далеко.
Искусственные органы, созданные из стволовых клеток. Стадия разработки: созданы прототипы, требуются дальнейшие исследования Когда команда английских ученых смогла создать сердечный клапан из стволовых клеток пациента, сразу же начались разговоры о создании искусственного сердца при помощи схожих технологий. Более того, это научное направление признано более перспективным, так как органы, созданные из стволовых клеток пациента, имеют гораздо больше шансов прижиться.Если исследовании ученых увенчаются успехом, то в будущем станет возможным заменить любой орган собственного тела на более молодой, здоровый и…свой собственный. Однако на данный момент ученые далеки от этой футуристической картины. Одним из факторов, ограничивающих исследования, является этический вопрос использования эмбриональных стволовых клеток.


http://irepeater.com/feeds/feed/5888/item/nauka-iskusstvennye-organy_2869831.html

Слайд 2

Введение

Одно из важных направлений современной медицины - создание искусственных органов. Искусственные органы - это созданные человеком органы - имплантаты, которые могут заменить настоящие органы тела.

Слайд 3

Искусственные органы- технические устройства, предназначенные для временной или постоянной замены функции того или иного внутреннего органа человека.

Слайд 4

Создание И.о. обусловлено также тем, что трансплантация не сможет полностью решить проблему замены нефункционирующих жизненно важных органов человека, т.к. количество пригодных для пересадки донорских органов намного меньше числа больных, нуждающихся в этой операции. И.о. не всегда полностью заменяют функцию естественного органа, особенно когда он обладает рядом сложных функций, например, печень, сердце.

Слайд 5

Чаще И.о. заменяют не весь орган, а наиболее важную его часть, например, искусственные клапаны сердца, предназначенные для обеспечения однонаправленного тока крови.

Слайд 6

Искусственные органы Неимплантируемые частично полностью Имплантируемые имплантируемые

Слайд 7

К неимплантируемымИ.о. можно отнести искусственную почку- аппарат для выведения из крови больного токсических продуктов обмена веществ, которые накапливаются при острой и хронической почечной недостаточности.

Слайд 8

Примеромчастично имплантируемогоИ.о., применяемого лишь только в эксперименте, может служить искусственное сердце с внешним приводом. В этой системе сам насос для перекачивания крови размещается внутри грудной полости, как правило, в пределах перикарда; системой шлангов насос связан с приводом, чаще всего пневматическим, и управляющим комплексов приборов

Слайд 9

Полностью имплантируемымИ.о. является такое устройство, все компоненты которого размещены внутри организма. примером этого являются электрокардиостимуляторы и искусственное сердце такой конструкции, где все узлы(насосы для крови, привод, система управления им, источник энергопитания) имплантируются внутрь организма.

Слайд 10

По времени функционирования И.о. можно разделить на: Аппараты, поддерживающие жизнедеятельность организма только при непрерывной их работе(напр., искусственное сердце) Аппарат, обеспечивающие жизнедеятельность организма при их прерывистом(дискретным) подключении (напр., искусственная почка)

Слайд 11

В проблеме И.о. большое значение имеет выбор материалов, из которых изготавливаются узлы аппаратов, непосредственно контактирующие с тканями и жидкими средами организма. Все эти материалы должны быть биологически инертными, т.е. не вызывающими воспалительной реакции окружающих тканей, не выделяющими со своей поверхности токсических химических веществ и т.д.

Слайд 12

Также важной проблемой в создании И.о. является адекватное поставленной цели инженерное решение. Как правило, при создании и.о. исследователи стремятся к тому, чтобы техническое устройство как можно точнее выполняло функцию естественного аналога. Конструктивные же решения при этом резко отличаются от архитектоники соответствующего органа. Это связано с отсутствием материалов, из которых можно было бы изготовить И.о., идентичных по своей конструкции анатомическому строению естественного органа, а также с определенным несовершенством современной технологии

Слайд 13

10 искусственных органов для создания настоящего человека

Слайд 14

1. Искусственный кишечник. Стадия разработки: успешно создан. Английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения. Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Слайд 15

2.Искусственное сердце. Стадия разработки: успешно создано, готово к имплантации. Первые искусственные сердца появились еще в 60-х годах прошлого века. Так называемое «временное» сердце Total Artificial Heart создано специально для пациентов, страдающих от нарушений сердечной деятельности. Этот орган поддерживает работу организма и фактически продлевает жизнь пациенту, который находится в ожидании органа для полноценной трансплантации. Первое «временное сердце» было имплантировано в 2007 году бывшему инструктору по фитнесу.

Слайд 16

3.Искусственная кровь. Стадия разработки: кислородная терапия. Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине. Искусственная кровь выполняет две основные функции: 1) увеличивает объем кровяных телец 2) выполняет функции обогащения кислородом. Если будет создана полноценная искусственная кровь, то по вкладу в развитие науки это открытие будет сравнимо разве что с возможным полетом человека на Марс.

Слайд 17

4.Искусственные кровеносные сосуды. Стадия разработки: подготовка экспериментов на людях. Ученые недавно разработали искусственные кровеносные сосуды, используя коллаге. Использования коллагена из лосося абсолютно безопасно, поскольку современная наука не знает ни одного вируса, который способен передаваться от лосося человеку. Пока эксперименты проводятся на животных, однако ученые готовятся к экспериментам на людях. Исследователи уверены, что созданные ими биоматериалы можно будет использовать для замены поврежденных кровеносных сосудов человека

Слайд 18

5.Искусственные кости. Стадия разработки: проводятся клинические исследования. Ученые довольно давно занимаются проблемой создания искусственных костей. Недавно было обнаружено, что лимонная кислота в сочетание с октандиолом создает вещество желтого цвета, похожее на резину, которому можно придать любую форму и заменить им поврежденную часть кости. Полученный полимер, смешанный с гидроапатитовым порошком, в свою очередь «превращается» в очень твердый материал, который можно использовать для восстановления сломанных костей.

Слайд 19

6.Искусственная матка. Стадия разработки: успешно созданные прототипы. Ученые уже давно работают над созданием искусственной матки, чтобы эмбрионы могли развиваться вне женских репродуктивных органов. Прототипы создавались учеными на основе клеток, выделенных из организма женщины Новая разработка в будущем позволит женщинам, страдающим от бесплодия, иметь детей. Противники новой технологии утверждают, что разработка ученых может в будущем ослабить связь матери и ребенка. Создание искусственной матки также поднимает этические вопросы о возможном клонировании человека и даже о введении запрета на аборты, поскольку эмбрион сможет выжить и в искусственной матке.

Слайд 20

7. Искусственная кожа. Стадия разработки: исследователи на пороге создания настоящей кожи. Созданная в 1996 году искусственная кожа используется для пересадки пациентам, чей кожных покров был сильно поврежден сильными ожогами. В 2001 году на основе этого метода была создана самовосстанавливающаяся искусственная кожа. Английские ученые открыли удивительный метод регенерации кожи. Созданные в лабораторных условиях клетки, генерирующие коллаген, воспроизводят реальные клетки человеческого организма, которые не дают коже стареть. С возрастом количество этих клеток уменьшается, и кожа начинает покрываться морщинами. Искусственные клетки, введенные непосредственно в морщины, начинают вырабатывать коллаген и кожа начинает восстанавливаться.

Слайд 21

8. Искусственная сетчатка. Стадия разработки: создана и успешно прошла тестирования, находится на стадии промышленного производства. Искусственная сетчатка Argus II в скором времени будет лечить людей, страдающих от различных форм слепоты, таких как дегенерация желтого пятна и пигментная дегенерация сетчатки. Дегенерация желтого пятна - это атрофия или дегенерация диска зрительного нерва, расположенного вблизи центра сетчатки. Пигментная дегенерация сетчатки - редкое наследственное заболевание, связанное с нарушением работы и выживанием палочек, а затем и колбочек.

Слайд 22

9. Искусственные конечности. Стадия разработки: эксперименты. Как известно, саламандры могут регенерировать оторванные конечности. Почему бы людям не последовать их примеру? Недавно проведенные исследования подарили людям с ампутированными конечностями надежду на возможную регенерацию утраченных частей тела. Ученые успешно вырастили новые конечности на саламандре, используя экстракт из мочевого пузыря свиньи. Исследователи находятся на самой ранней стадии развития новой технологии, которая только будет разработана - до ее применения на людях еще далеко.

Слайд 23

10. Искусственные органы, созданные из стволовых клеток. Стадия разработки: созданы прототипы, требуются дальнейшие исследования. Когда команда английских ученых смогла создать сердечный клапан из стволовых клеток пациента, сразу же начались разговоры о создании искусственного сердца при помощи схожих технологий. Более того, это научное направление признано более перспективным, так как органы, созданные из стволовых клеток пациента, имеют гораздо больше шансов прижиться.

Слайд 24

Искусственные легкие(оксигенаторы)

Аппарат «искусственное сердце - легкие», аппарат, обеспечивающий оптимальный уровень кровообращения и обменных процессов в организме больного или в изолированном органе донора; предназначен для временного выполнения функций сердца и лёгких. Блок-схема аппарата искусственного и кровообращения.

Слайд 25

АИК включает комплекс взаимосвязанных систем и блоков: «искусственное сердце» - аппарат, состоящий из насоса, привода, передачи и нагнетающий кровь с необходимой для жизнеобеспечения объёмной скоростью кровотока; «искусственные лёгкие» - газообменное устройство, так называемый оксигенатор, служит для насыщения крови кислородом, удаления углекислого газа и поддержания кислотно-щелочного равновесия в физиологических пределах. Аппарат искусственного кровообращения АИК-5 кардиохирургического назначения.

Слайд 26

Искусственное сердце

Искусственное сердце – альтернатива пересадке. Сердце или искусственные желудочки применяются у больных в терминальной стадии сердечной недостаточности для спасения их жизни и поддержки кровообращения до того момента, когда найдется подходящей для пересадки сердца донорский орган. В 1998 году впервые в мире был имплантирован искусственный желудочек с принципиально новым принципом действия, сконструированный при участии специалистов NASA и Майкла ДеБейки. Этот маленький насос массой всего 93 грамма способен перекачивать до 6-7 литров крови в минуту и тем самым обеспечивать нормальную жизнедеятельность всего организма.

Слайд 27

Ученые заявляют, что они разработали полностью рабочий прототип искусственного сердца, который готов для пересадки человеку. Устройство не только воспроизводит сердцебиения, очень схожие с настоящими, но также снабжено специальными электронными сенсорами, позволяющим регулировать сердечный ритм и кровоток.

Слайд 28

Кардиостимуляторы

Одним из наиболее высокотехнологичных видов медицинского оборудования является кардиостимулятор. Кардиостимулятор представляет собой устройство, предназначенное для поддержания ритма сердца. Данный прибор является незаменимым для людей с такими заболеваниями сердца, как брадикардия – недостаточно частое сердцебиение – или атриовентрикулярная блокада.

Слайд 29

Кардиостимуляторы - устройства, работающие в асинхронном режиме, осуществляя при этом стимуляцию сердцебиения с фиксированной частотой. Более совершенные кардиостимуляторы явили собой двухкамерные электростимуляторы. Сегодня используются кардиостимуляторы двухкамерного типа, они позволяют не только стимулировать работу сердца, но и определять у больного фибрилляции, трепетания предсердий. При этом кардиостимулятор способен переключаться на другой, более безопасный режим работы в случае обнаружения отклонений. В данном случае исключается возможность поддержания и стимуляции наджелудочковой тахикардии.

Слайд 30

Временный электрокардиостимулятор

Временная электрокардиостимуляция - один из методов терапии, способствующий предотвращению смертельных случаев. Временный электрокардиостимулятор устанавливается пациенту доктором-реаниматологом, в случае если у пациента неожиданно нарушается ритм сердца, именуемый аритмией, также известной как абсолютная блокада сердца. Наиболее часто блокада сердца встречается при инфаркте миокарда.

Слайд 31

Установка кардиостимулятора

На сегодняшний день имеется совершенно новое поколение данного устройства – трехкамерный кардиостимулятор, однако он находится еще в стадии внедрения в эксплуатацию. Наиболее эффективный и максимально безопасный кардиостимулятор для поддержания ритма сердцебиения, который предназначен для диагностики сердечных заболеваний и использования в условиях клиники. Высокоэффективный кардиостимулятор помогает больным, страдающим заболеваниями сердца, поддерживать хорошее самочувствие и жизнеспособность.

Слайд 32

Кардиовертер-дефибриллятор

Кардиовертер-дефибриллятор - это современное устройство стимуляции, использующееся в целях предотвращения неожиданного прекращения работы сердца у больных, страдающих желудочковой тахикардию.

Слайд 33

Кардиостимулятор (ЭКС) объединяет в себе два элемента: стимулятор электрических разрядов и от одного до трех проводов-электородов, которые играют роль спиралеобразного проводника, характеризующегося изрядной гибкостью и гладкостью, являющегося стойким к изгибам и скручиваниям, происходящим по причине телодвижений и сердечных сокращений.

Слайд 34

Кардиостимуляторы и спорт

Слайд 35

Биологические протезы клапана сердца

На раннем этапе развития кардиохирурги пытались применять в качестве заместительного материала клапанные устройства, основанные на биологических тканях ксеногенного (т.е. заимствованного у животных) или аллогенного (т.е. заимствованного у человека) происхождения. Главным недостатком этих устройств явился ограниченный срок службы клапана в связи с постепенным разрушительным воздействием на биоткани со стороны организма реципиента.

Слайд 36

Двустворчатые протезы

  • Слайд 37

    Биологический ксеноаортальный протез BRAILE (Бразилия) Биологический ксеноперикардиальный протез BRAILE (Бразилия) Биологический ксеноперикардиальный протез Mitraflow Synergy (США) Биологический ксеноаортальный протез “LABCOR” (США) Российский биологический ксеноаортальный протез “КемКор” Гомоаортальный трансплантат (гомографт,аллографт).

    Слайд 38

    Вывод:

    Медицина не стоит на месте, она развивается и в скором будущем созданные искусственные органы смогут полностью заменить больные органы человека. Следовательно продолжительность жизни станет выше. Медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

    Слайд 39

    Список использованной литературы

    Галлетти П. М., Бричер Г. А., Основы и техника экстракорпорального кровообращения, пер. с англ., М., 1966. Н. А. Супер. www.google.kz www.mail.ru www.wikipedia.ru

    Посмотреть все слайды

    Типы тканей

    Эпителиальная ткань

    Эпителиальная (покровная) ткань , или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

    Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией ).

    Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

    Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток – желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

    Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

    Соединительная ткань

    <<<назад

    Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

    В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь – клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

    В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

    В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

    Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

    Костная ткань

    <<<назад

    Костная ткань , образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

    В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

    Хрящевая ткань

    <<<назад

    Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

    Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

    Жировая ткань

    <<<назад

    Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани – теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

    Мышечная ткань

    <<<назад

    Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

    Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения – произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

    Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани – гладкую (неисчерченную) и поперечнополосатую (исчерченную).

    Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

    Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

    Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

    Нервная ткань

    <<<назад

    Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

    Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны . Аксоны образуют нервные волокна.

    Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.

    В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

    Теперь всю полученную информацию мы можем объединить в таблицу.
    <<<назад

    Типы тканей

    Группа тканей Виды тканей Строение ткани Местонахождение Функции
    Эпителий Плоский Поверхность клеток гладкая. Клетки плотно примыкают друг к другу Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов Покровная, защитная, выделительная (газообмен, выделение мочи)
    Железистый Железистые клетки вырабатывают секрет Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)
    Мерцательный (реснитчатый) Состоит из клеток с многочисленными волосками(реснички) Дыхательные пути Защитная (реснички задерживают и удаляют частицы пыли)
    Соединительная Плотная волокнистая Группы волокнистых, плотно лежащих клеток без межклеточного вещества Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза Покровная, защитная, двигательная
    Рыхлая волокнистая Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела
    Хрящевая Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин
    Костная Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество – неорганические соли и белок оссеин Кости скелета Опорная, двигательная, защитная
    Кровь и лимфа Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами – сыворотка и белок фибриноген) Кровеносная система всего организма Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)
    Мышечная Поперечно–полосатая Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами Скелетные мышцы, сердечная мышца Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца.Имеет свойства возбудимости и сократимости
    Гладкая Одноядерные клетки до 0,5 мм длины с заостренными концами Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже
    Нервная Нервные клетки (нейроны) Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре Образуют серое вещество головного и спинного мозга Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости
    Короткие отростки нейронов – древовидноветвящиеся дендриты Соединяются с отростками соседних клеток Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела
    Нервные волокна – аксоны (нейриты) – длинные выросты нейронов до 1,5 м длины. В органах заканчиваются ветвистыми нервными окончаниями Нервы периферической нервной системы, которые иннервируют все органы тела Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) – к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)

    Органы – это части организма, выполняющие определённые функции. Они имеют определенную форму и место расположение.

    Строение.

    Обычно орган состоит из нескольких видов тканей, но какая – то из них может преобладать: главная ткань желез – эпителиальная, а мускула – мышечная. Так, например, в печени, легких, почках, железах основной, «рабочей» тканью является эпителиальная, в кости – соединительная, в мозге – нервная. Орган имеет свою, только ему свойственную форму и положение в организме. В зависимости от выполняемых функций разным бывает и строение органа.

    Органы анатомически и функционально объединяются в системы органов , т. е. в группы органов, связанных друг с другом анатомически, имеющих общий план строения, единство происхождения и выполняющих одну общую функцию.

    Функция

    В организме человека выделяют следующие системы органов: пищеварительную, покровную, дыхательную, мочевыделительную, половую, нервную, кровеносную, лимфатическую и иммунную . Некоторые органы объединяются по функциональному принципу в аппараты . В аппаратах органы имеют различное строение и происхождение, но их объединяет участие в выполнении общей функции, например, опорно – двигательный, эндокринный аппарат.

    В покровную систему входят кожа и слизистые оболочки, выстилающие полость рта, дыхательных путей, органов пищеварения. Покровная система предохраняет организм от высыхания, температурных колебаний, повреждения, проникновения в организм ядовитых в-в и болезнетворных микроорганизмов.

    Система опоры и движения включает в себя кости и мышцы. Кости, объединенные в скелет, создают опору для всех частей тела. Кости защищают внутренние органы и совместно с мышцами обеспечивают подвижность тела.

    Выделительная система обеспечивает удаление из организма жидких продуктов обмена.

    Дыхательная система состоит из целого ряда полостей и трубок и обеспечивает обмен газов между кровью и внешней средой.

    Пищеварительная система включает в себя органы, обеспечивающие переваривание пищи и всасывание в кровь питательных в-в.

    Функция половой системы – размножение. В её органах формируются половые клетки, а в женских половых органах, кроме того, происходит развитие плода.

    Эндокринная система включает в себя целый ряд желёз внутренней секреции, вырабатывающих и выделяющих в кровь биологически активные в-ва (горомоны), участвующие в регуляции функций всех клеток и тканей организма.

    Кровеносная система состоит из сердца и сосудов, а циркулирующая в них кровь обеспечивает обмен в-в.

    Нервная система объединяет все вышеперечисленные системы, регулирует и согласовывает их деятельность, а посредством рецепторов (органов чувств) осуществляет связь организма с окружающей средой. Психическая деятельность формируется нервной системой. Благодаря деятельности нервной и эндокринной систем организм функционирует как единое целое.

    Орган или система органов вне организма функционировать не может, а организм не может функционировать без любой из своих систем.

    Это интересно!

    Создание искусственных органов и тканей

    М.В.Плетников
    перевод с английского Science, 1995,
    Vol. 270, N 5234, pp. 230-232.

    Создание искусственных органов и тканей оформилось в самостоятельную отрасль науки около десяти лет тому назад. Первые достижения этого направления – создание искусственной кожи и хрящевой ткани, образцы которых уже проходят первые клинические испытания в центрах трансплантации. Одно из последних достижений состоит в конструировании хрящевой ткани, способной к активной регенерации.

    Это действительно огромный успех, поскольку поврежденная суставная ткань не регенерирует в организме. В клиниках США ежегодно оперируют более 500 тыс. больных с повреждениями суставного хряща, но подобное хирургическое вмешательство лишь на короткое время облегчает боль и улучшает движения в суставе.

    В настоящее время предпринимаются попытки выращивания в лабораторных условиях печени. Но печень – сложно устроенный орган, состоящий из разных типов клеток, обеспечивающих очищение крови от токсинов, преобразование поступивших извне питательных веществ в усваиваемую организмом форму и выполняющих целый ряд других функций. Поэтому создание искусственной печени требует гораздо более сложной технологии: все эти разнообразные типы клеток должны быть размещены строго определенным образом, то есть основа, на которой они базируются, должна обладать высокой избирательностью.

    Среди органов и тканей, которые в настоящее время интенсивно исследуются с целью их биотехнологического воссоздания, можно отметить также костную ткань, сухожилия, кишечник, сердечные клапаны, костный мозг и трахею. Помимо работ по созданию искусственных органов и тканей человеческого организма ученые продолжают разрабатывать и методы вживления в организм больных диабетом людей клеток, продуцирующих инсулин, а людям, страдающим болезнью Паркинсона, – нервных клеток, синтезирующих нейромедиатор дофамин, что позволит избавить пациентов от ежедневных утомительных инъекций.

    Каждая клетка организма выполняет определенную работу и поэтому нуждается в постоянном притоке кислорода и питательных веществ, а также в непрерывном удалении продуктов обмена. Кислород и питательные вещества могут проникать сквозь мембрану клетки только тогда, когда они находятся в растворенном состоянии. Каждую клетку омывает жидкость, которая содержит все необходимое для ее жизнедеятельности. Это – тканевая жидкость . Из него клетки получают O 2 и питательные вещества, а в него отдают углекислый газ и отработанные продукты обмена.

    Бесцветная прозрачная тканевая жидкость заполняет в организме промежутки между клетками. Она образуется из жидкой части крови – плазмы, проникающей в межклеточные щели через стенки кровеносных сосудов, и из продуктов обмена, постоянно поступающих из клеток. Ее объем у взрослого человека составляет приблизительно 20 л.

    Кровеносные капилляры не подходят к каждой клетке, поэтому питательные вещества и кислород из капилляров по законам диффузии вначале поступают в тканевую жидкость, а из нее поглощаются клетками. Следовательно, через тканевую жидкость осуществляется связь между капиллярами и клетками. Диоксид углерода, вода и другие продукты обмена, образующиеся в клетках, также за счет разности концентраций выделяются из клеток сначала в тканевую жидкость, а потом поступают в капилляры. Кровь из артериальной становится венозной и доставляет продукты распада к почкам, легким, коже, через которые они удаляются из организма.

    Питательные вещества поступают в организм через органы пищеварения, а продукты распада выводятся из него через органы выделения. Связь между этими органами и клетками тела осуществляется через внутреннюю среду организма, которая состоит из крови, тканевой жидкости и лимфы.

    1–клетки крови, 2–капилляр, 3–клетки тканей, 4–тканевая жидкость,
    5–начало лимфатических капилляров

    Кислород и питательные вещества поступают в межклеточное вещество из крови, циркулирующей по замкнутой системе кровеносных сосудов. Мельчайшие кровеносные сосуды – капилляры пронизывают все ткани организма. Через стенки капилляров в межклеточное вещ – во постоянно поступают содержащиеся в крови различные химические соединения и вода и поглощаются продукты обмена, выделяемые клетками.

    В межклетниках слепо начинаются лимфатические капилляры, в них поступает тканевая жидкость, которая в лимфатических сосудах становится лимфой. Цвет лимфы желтовато–соломенный. Она на 95% состоит из воды, содержит белки, минеральные соли, жиры, глюкозу, а также лимфоциты (разновидность лейкоцитов). Состав лимфы напоминает состав плазмы , но белков здесь меньше, и в разных участках тела – она имеет свои особенности. Например, в области кишечника в ней много жировых капель, что придает ей беловатый цвет.

  • Loading...Loading...