Определение расстояний на местности. &6. Измерение расстояний на местности


Очень часто разведчику требуется определять расстояния до различных предметов на местности, а также оценивать их размеры. Наиболее точно и быстро расстояния определяются посредством специальных приборов (дальномеров) и дальномерных шкал биноклей, стереотруб, прицелов. Но из-за отсутствия приборов нередко расстояния определяют с помощью подручных средств и на глаз.

К числу простейших способов определения дальности (расстояний) до

объектов на местности относятся следующие:

Глазомерно;

По линейным размерам объектов;

По видимости (различимости) объектов;

По угловой величине известных предметов;

По звуку.

Глазомерно - это самый простой и быстрый способ. Главное в нем - тренированность зрительной памяти и умение мысленно откладывать на местности хорошо представляемую постоянную меру (50, 100, 200, 500 метров). Закрепив в памяти эти эталоны, нетрудно сравнивать с ними и

оценивать расстояния на местности.

При измерении расстояния путем последовательного мысленного откладывания хорошо изученной постоянной меры надо помнить, что местность и местные предметы кажутся уменьшенными в соответствии с их удалением, то есть при удалении в два раза и предмет будет казаться в

два раза меньше. Поэтому при измерении расстояний мысленно откладываемые отрезки (меры местности) будут уменьшаться соответственно удалению.

При этом необходимо учитывать следующее:

Чем ближе расстояние, тем яснее и резче нам кажется видимый предмет;

Чем ближе предмет, тем он кажется больше;

Более крупные предметы кажутся ближе мелких предметов, находящихся на том же расстоянии;

Предмет более яркой окраски кажется ближе, чем предмет темного цвета;

Ярко освещенные предметы кажутся ближе слабо освещенных, находящихся на том же расстоянии;

Во время тумана, дождя, в сумерки, пасмурные дни, при насыщенности воздуха пылью наблюдаемые предметы кажутся дальше, чем в ясные и солнечные дни;

Чем резче разница в окраске предмета и фона, на котором он виден, тем более уменьшенными кажутся расстояния; так, например, зимой снежное поле как бы приближает находящиеся на нем более темные предметы;

Предметы на ровной местности кажутся ближе, чем на холмистой, особенно сокращенными кажутся расстояния, определяемые через обширные водные пространства;

Складки местности (долины рек, впадины, овраги), невидимые или не полностью видимые наблюдателем, скрадывают расстояние;

При наблюдении лежа предметы кажутся ближе, чем при наблюдении стоя;

При наблюдении снизу вверх - от подошвы горы к вершине, предметы кажутся ближе, а при наблюдении сверху вниз - дальше;

Когда солнце находится позади разведчика, расстояние скрадывается; светит в глаза - кажется большим, чем в действительности;

Чем меньше предметов на рассматриваемом участке (при наблюдении через водное пространство, ровный луг, степь, пашню), тем расстояния кажутся меньше.

Точность глазомера зависит от натренированности разведчика. Для расстояния 1000 м обычная ошибка колеблется в пределах 10-20%.

По линейным размерам. Чтобы определить расстояние этим способом, надо:

Держать перед собой линейку на расстоянии вытянутой руки (50-60 см от глаза) и измерить по ней в миллиметрах видимую ширину или высоту предмета, до которого требуется определить расстояние;

Действительную высоту (ширину) предмета, выраженную в сантиметрах, разделить на видимую высоту (ширину) в миллиметрах, и результат умножить на 6 (постоянное число), получим расстояние.

Например, если столб высотой 4 м (400 см) закрывается по линейке 8 мм, то расстояние до него будет 400 х 6 = 2400; 2400:8 = 300 м (действительное расстояние).

Чтобы определять расстояния таким способом, требуется хорошо знать линейные размеры различных объектов, либо иметь эти данные под рукой (на планшете, в записной книжке). Размеры наиболее часто встречаемых объектов разведчику надо помнить, так как они требуются и для способа измерения по угловой величине, являющегося для разведчиков

основным.

По видимости (различимости) объектов. Невооруженным глазом можно приблизительно определить расстояние до целей (предметов) по степени их видимости. Разведчик с нормальной остротой зрения может увидеть и различить некоторые предметы со следующих предельных расстояний,

указанных в таблице. Надо иметь в виду, что в таблице указаны предельные расстояния, с которых начинают быть видны те или иные предметы.

Например, если разведчик увидел трубу на крыше дома, то это

означает, что до дома не более 3 км, а не ровно 3 км. Пользоваться данной таблицей как справочной не рекомендуется. Каждый разведчик должен индивидуально для себя уточнить эти данные. При глазомерном определении расстояний желательно пользоваться ориентирами, расстояния до которых уже точно известны.

По угловой величине. Для применения этого способа надо знать линейную величину наблюдаемого предмета (его высоту, длину либо ширину) и тот угол (в тысячных), под которым виден данный предмет. Например, высота железнодорожной будки составляет 4 метра, разведчик видит ее под углом 25 тысячных (толщина мизинца). Тогда

Измерение расстояния - одна из самых основных задач в геодезии. Есть разные расстояния, а также большое количество приборов, созданных для проведения этих работ. Итак, рассмотрим данный вопрос более детально.

Прямой метод измерения расстояний

Если требуется определить расстояние к объекту по прямой линии и местность является доступной для исследования, используется такой простейший прибор для измерения расстояния, как стальная рулетка.

Ее длина - от десяти и до двадцати метров. Еще может применяться шнур или провод, с белыми обозначениями через два и красными через десять метров. При необходимости измерять криволинейные объекты применяется старый и всем хорошо известный двухметровый деревянный циркуль (сажень) или, как еще его называют, «Ковылек». Иногда возникает необходимость произвести предварительные замеры приблизительной точности. Делают это, измеряя расстояние шагами (из расчета два шага равно росту измеряющего минус 10 или 20 см).

Измерение расстояний на местности дистанционно

В случае нахождения объекта измерения в зоне прямой видимости, но при наличии неодолимой преграды, делающей невозможным прямой доступ к объекту, (например озера, речки, болота, ущелья и пр), применяется измерение расстояния дистанционно визуальным методом, а точнее методами, так как существует их несколько разновидностей:

  1. Высокоточные измерения.
  2. Низкоточные или приблизительные измерения.

К первым относятся измерения при помощи специальных приборов, таких, как оптические дальномеры, электромагнитные или радиодальномеры, световые или лазерные дальномеры, ультразвуковые дальномеры. Ко второму виду измерений относится такой способ, как геометрический глазомерный. Тут и определение расстояния по угловой величине предметов, и построение равных прямоугольных треугольников, и метод прямой засечки многими другими геометрическими способами. Рассмотрим некоторые из способов высокоточных и приблизительных измерений.

Оптический измеритель расстояния

Такие замеры расстояний с точностью до миллиметра в обычной практике необходимы нечасто. Ведь ни туристы, ни военные разведчики не будут носить с собой габаритные и тяжелые предметы. В основном их используют при проведении профессиональных геодезических и строительных работ. Часто используют при этом такой прибор для измерения расстояния, как оптический дальномер. Он может быть как с постоянным, так и с переменным параллактическим углом и представлять собой насадку к обычному теодолиту.

Измерения производятся по вертикальным и горизонтальным измерительным рейкам, имеющим специальный установочный уровень. такого дальномера достаточно высока, и погрешность может достигать значения 1:2000. Дальность же измерения небольшая и составляет всего лишь от 20 и до 200-300 метров.

Электромагнитный и лазерный дальномеры

Электромагнитный измеритель расстояния относится к так называемым приборам импульсного типа, точность их измерения считается средней и может иметь погрешность от 1,2 и до 2 метров. Но зато эти приборы имеют большое преимущество перед своими оптическими собратьями, так как оптимально подходят для определения расстояния между движущимися объектами. Единицы измерения расстояния у них могут исчисляться как метрами, так и километрами, поэтому их часто применяют при проведении аэрофотосъемки.

Что же касается лазерного дальномера, он предназначен для измерения не очень больших расстояний, обладает высокой точностью и очень компактен. Особенно это относится к современным портативным Эти устройства измеряют расстояние до объектов на расстоянии от 20-30 метров и до 200 метров, с погрешностью не более 2-2,5 мм на всей длине.

Ультразвуковой дальномер

Это один из самых простых и удобных приборов. Он легок и прост в эксплуатации и относится к устройствам, которые могут измерять площадь и угловые координаты отдельно заданной точки на местности. Тем не менее кроме очевидных плюсов есть у него и минусы. Во-первых, из-за небольшой дальности замера единицы измерения расстояния у этого прибора могут исчисляться только в сантиметрах и метрах - от 0,3 и до 20 метров. Также точность замера может незначительно изменятся, так как скорость прохождения звука напрямую зависит от плотности среды, а она, как известно, не может быть постоянной. Тем не менее это устройство отлично подходит для быстрых небольших замеров, не требующих высокой точности.

Геометрические глазомерные способы измерения расстояний

Выше шла речь о профессиональных способах замера расстояний. А что делать, когда под рукой отсутствует специальный измеритель расстояния? Тут на помощь приходит геометрия. Например, если необходимо измерить ширину водной преграды, то можно построить на ее берегу два равносторонних прямоугольных треугольника, как это изображено на схеме.

В данном случае ширина реки AF будет равна DE-BF Углы можно выверить с помощью компаса, квадратного листочка бумаги и даже с помощью одинаковых скрещенных веточек. Здесь проблем возникнуть не должно.

Еще можно измерить расстояние до цели через преграду, использовав также геометрический метод прямой засечки, построив прямоугольный треугольник с вершиной на цели и разделив его на два разносторонних. Есть способ определения ширины преграды с помощью простой травинки или нитки, или способ с помощью выставленного большого пальца…

Стоит рассмотреть этот способ подробнее, так как он является самым простым. На противоположной стороне преграды выбирается приметный предмет (обязательно нужно знать приблизительную его высоту), один глаз закрывается и на выбранный предмет наводится поднятый большой палец вытянутой руки. Потом, не убирая палец, закрывают открытый глаз и открывают закрытый. Палец получается по отношению к выбранному предмету сдвинут в сторону. Исходя из предполагаемой высоты предмета, приблизительно представляется на сколько метров визуально переместился палец. Это расстояние умножается на десять и в результате получается приблизительная ширина преграды. В данном случае сам человек выступает как стереофотограмметрический измеритель расстояния.

Геометрических способов измерения расстояния немало. Что бы о каждом рассказать подробно, понадобится немало времени. Но все они приблизительны и годятся только для условий, когда точное измерение с помощью приборов является невозможным.

Вспоминаем: Какие вы знаете способы определения расстояний между двумя предметами?

Ключевые слова: расстояние, длина шага, дальномер, рисунок местности.

1. Способы измерения расстояний. Пройденный путь в походе или расстояние между двумя далеко расположенными предметами измерять рулеткой или метром долго. В таком случае расстояние удобнее измерять шагами. Для этого нужно знать среднюю длину своего шага. Напомним, что для определения средней длины шага необходимо отмерить на местности с помощью рулетки расстояние, например 50 м. Затем обычным шагом пройти это расстояние, подсчитывая количество шагов. Предположим, что вы прошли расстояние в 50 метров и сделали 70 шагов. Следовательно, средняя длина вашего шага равна приблизительно 71 см (5 000 см: 70 = 71 см)

При измерений больших расстояний шаги удобнее считать парами (например, только под левую ногу).

Менее точно расстояние можно определить и по времени, затраченному на ходьбу. Так, если 1км вы пройдете за 15 минут, то за 1 час пройдете 4 км. Можно определить расстояние на глаз.

Иногда для измерения расстояний пользуются приборами, которые называются дальномерами. Дальномер легко изготовить самим (рис.16).

Чтобы с помощью дальномера определить расстояние до объекта, его надо держать на вытянутой руке перед глазами и, двигая вправо или влево, добиться того, чтобы вся фигура человека была видна через прорезь. При этом основание объекта должно быть в нижней части прорези. Под ней будет цифра, соответствующая расстоянию от наблюдателя до объекта. На рисунке видно, что расстояние в данном примере равно 80 м.

Рис.16. Простейший дальномер (чертеж выполнен в натуральную величину). Перечертите рисунок на лист плотного картона и закрашенную часть вырежьте.

2. Виды изображения местности. Чтобы принять решение, где строить новые заводы, жилые дома, проводить дороги, чтобы планировать размещение посевов, пастбищ, нужно иметь изображение местности. Небольшую по площади местность можно нарисовать или сфотографировать (рис.17).

Рис. 17.Снимок местности.

Но есть и другие изображения земной поверхности, по которым можно хорошо рассмотреть различные объекты (леса, реки, поселки, поля и т.д.), узнать их размеры и взаимное расположение. Это аэрофотоснимки (рис. 18) и планы местности (рис. 19).

Рис. 18. Аэрофотоснимок участка местности. Какие объекты вы можете различить на аэрофотоснимке участка местности.?

Рис. 19. План местности. Чем он отличается от аэрофотоснимка?

Аэрофотоснимки получают фотографированием поверхности Земли с самолетов.

    1. Как определить расстояние по затраченному на ходьбу времени? 2. Какой простейший прибор можно использовать для определения расстояния? 3. Какие виды изображения местности вы знаете?

& 7. План местности

В школе при изучении географии и в дальнейшем вы будете обращаться к карте, чтобы узнать, где находятся разные географические объекты, каковы их свойства. Для этого познакомимся сначала с тем, что такое план местности и географическая карта, как люди изображают на них поверхность Земли. Уметь пользоваться планом очень важно. Так, например, в незнакомом городе, имея план, можно найти нужную улицу, театр, музей, памятники и другие объекты. Строители, пользуясь планом местности, решают, где лучше проложить новую дорогу, построить населенные пункты во вновь осваиваемых районах.

Вспоминаем: Что называется азимутом? Как определить азимут на местности? Как определить расстояние по затраченному на ходьбу времени?

Ключевые слова: чертеж, план местности, условные знаки.

1. План местности. Планы местности, как и аэрофотоснимки, изображают местность сверху. Но между фотографией, рисунком, аэрофотоснимком и планом местности есть различия.

Рисунок и фотография местности от плана отличается тем, что на рисунке показан вид местности сбоку, а на плане - вид местности сверху.

На фотографии все предметы изображены в натуральном виде, а на плане изображается при помощи условных знаков.

Местность можно изобразить и при помощи чертежа, на котором расстояния будет показано в масштабе.

Таким образом, п л а н м е с т н о с т и - это чертеж небольшого участка земной поверхности, сделанный в определенном масштабе и с использованием условных знаков. Составная часть плана - условные знаки и масштаб.

2. Условные знаки. Объекты и предметы на плане местности изображаются при помощи условных знаков (рис. 20).

Рис. 20. Условные знаки плана местности. Похожи ли условные знаки на объекты, которые они изображают?

Многие условные знаки изображают объекты, которые на местности занимают значительные площади. Это поля, леса, болота, заросли кустарников. Границу между ними на планах местности показывают маленькими точками.

Небольшие речки и ручьи, дороги, узкие улицы изображаются условными знаками в виде линий. По их длине можно узнать длину изображенной речки или дороги. При нанесении на план условных знаков необходимо придерживаться определенных правил.

Рис.21. Неправильное (А) и правильное (Б) изображение условных знаков на плане.

*Условные знаки имелись уже на древних планах. Это были фигурки животных и людей, рисунки домов и крепостных стен. Знаки у планов были разными. На современных планах условные знаки не меняются.

Выработка условных знаков является сложной задачей. Хорошо разработанные условные знаки помогают лучше читать план и карту, облегчают их вычерчивание. Знаки должны быть просты и наглядны.

    1. Что называется планом местности? 2. Найдите на плане местности (рис 19.) луг, смешанный лес, заросли кустарников, овраги и другиеобъекты местности.

3. Используя рис. 21, определите, какие ошибки допущены на левом плане в изображении условных знаков лугов, болот, вырубленного леса, отдельного дерева.

Практическая работа.

    Постройте таблицу, в которой отразите различия в изображении местности на рисунке, фотографии, аэрофотоснимке.

& 8. Масштабы планов местности .

Вспоминаем: Как обозначаются объекты на плане местности? Что такое азимут?

Ключевые слова: масштаб, численный масштаб, именованный масштаб, линейный масштаб, ориентирование по плану местности.

1. Виды масштабов. Предположим, вам надо на бумаге изобразить расстояние от своей школы к дому. Вы уже знаете, что расстояние от школы до вашего дома 910 м. Показать в натуральную величину это расстояние на бумаге невозможно, поэтому необходимо вычертить его в масштабе. М а с ш т а б о м называют дробь, у которой числитель единица, а знаменатель - число, указывающее, во сколько раз расстояние на плане меньше, чем на самой местности. Условимся, что на бумаге мы все расстояния будем изображать в 10 000 раз меньше, чем в действительности, т.е. в масштабе 1: 10 000 (одна десятитысячная). Эту дробь можно записать и так 1/10 000. Это означает, что 1 см на бумаге у нас будет соответствовать 10 000 см (или 100 м) на местности. Тогда расстояние от школы до вашего дома будет 9 см 1 мм.

Этот вид масштаба называют ч и с л е н н ы м

По численному масштабу узнают, во сколько раз уменьшены на плане все расстояния. Чем больше число в знаменателе дроби, тем больше уменьшение. Теперь вы можете на бумаге изобразить расстояние от вашего дома до школы.

Этот же масштаб можно записать словами "в 1 сантиметре - 100м". Такой масштаб называется и м е н о в а н н ы м . Он удобен тем, что по измеренной на плане линии можно сразу узнавать расстояние на местности.

На планах помещают также и линейный масштаб.

Л и н е й н ы й м а с ш т а б - это прямая линия, разделенная на равные части (обычно сантиметры). При вычерчивании линейного масштаба нуль ставят, отступив 1 см от левого конца отрезка, а первый сантиметр делят на более мелкие части (по 2 мм) (рис. 22).

Рис. 22. Обозначение масштаба на плане местности и на карте.

Линейный масштаб служит для определения расстояний по плану с помощью циркуля-измерителя (см. рис 23).

Рис. 23. Положение циркуля-измерителя при измерении расстояний на плане с помощью линейного масштаба.

2. Определение азимута по плану местности. На планах направление на север часто обозначают стрелкой. Если стрелка не изображена, то считается, что верхний край плана – северный, нижний – южный, правый – восточный и левый – западный. Предположим, что надо пройти от парома на реке Голубая до плотины на реке Малиновка (рис. 24)

Рис. 24. Определение азимута по плану при помощи транспортира.

Для этого следует знать, по какому азимуту необходимо двигаться от парома, чтобы прийти к плотине. Этот азимут можно определить по плану при помощи транспортира (рис.24). Какой это азимут? На местности же вы находите этот азимут при помощи компаса и по этому азимуту идете в нужном направлении.

    1. Что такое масштаб? 2. Какие виды масштабов различают? 3. Что показывает знаменатель численного масштаба? 4. Когда удобнее пользоваться именованным масштабом?

Практическая работа.

    Изобразите на чертеже расстояние 300 м в масштабах: в 1 см - 100 м, в 1 см - 30 м. Какой из масштабов крупнее?

    Изобразите на чертеже расстояние в 500 м. Масштаб выберите сами.

    Прочитайте масштабы 1:20 000 и 1:300 000. Во сколько раз уменьшены расстояния в первом и во втором случае? Переведите эти численные масштабы в именованные. Выразите их линейными масштабами.

    * Ученик изобразил на чертеже расстояние в 1 км отрезком длиной 10 см. Определите, какой масштаб он выбрал для выполнения задания

    * Ученик изобразил расстояние в 500 м на чертеже в масштабе в 1 см - 50 м. Чему равно это расстояние на чертеже?

    **Ученик из пункта А до пункта Б прошел по азимуту 360 градусов 100 м (условно отразите в тетради это расстояние в масштабе 1:1000). От пункта Б до пункта В он прошел еще такое же расстояние по азимуту 90 градусов. От пункта В такое же расстояние он прошел по азимуту 180 градусов. Начертите путь ученика в тетради и определите, какое расстояние и по какому азимуту ему осталось пройти до пункта А.

Конкурс знатоков . Вы нашли план. Часть листа, где расположен масштаб не сохранилась. Как определить масштаб этого плана?

Раздел 4. Измерения на местности и целеуказание

§ 1.4.1. Угловые меры и формула тысячной

Градусная мера. Основная единица - градус (1/90 прямого угла); 1° = 60"; 1"=60".

Радианная мера. Основная единица радиан - центральный угол, стягиваемый дугой, равной радиусу. 1 радиан равен приблизительно 57°, или, примерно, 10 больших делений угломера (см.ниже).

Морская мера. Основная единица - румб, равная 1/32 части окружности (10°1/4).

Часовая мера. Основная единица - угловой час (1/6 прямого угла, 15°); обозначается буквой h , при этом: 1 h = 60 m , 1 m = 60 s (m – минуты, s - секунды).

Артиллерийская мера. Из курса геометрии известно, что длина окружности равна 2πR, или 6,28R (R – радиус окружности). Если окружность разделить на 6000 равных частей, то каждая такая часть будет равна примерно одной тысячной длины окружности (6,28R/6000 = R/955 ≈ R/1000). Одна такая часть длины окружности называется тысячной (или делением угломера ) и является основной единицей артиллерийской меры. Тысячная широко используется в артиллерийских измерениях, поскольку позволяет легко переходить от угловых единиц к линейным единицам и обратно: длина дуги, соответствующая делению угломера, на всех расстояниях равна одной тысячной длины радиуса, равного дальности стрельбы (рис.4.1).

Формула, показывающая взаимосвязь дальности до цели, высоты (длины) цели и ее угловой величины называется формулой тысячной и применяется не только в артиллерии, но и в военной топографии:

где Д - расстояние до предмета, м; В - линейный размер предмета (длина, высота или ширина), м;У - угловая величина предмета в тысячных. Запоминанию формулы тысячной способствуют такие образные выражения, как: « Дунул Ветер, Тысяча Упала », или: « Веха высотой 1 м, удалённая от наблюдателя на 1 км, видна под углом в 1 тысячную ».

Следует учитывать, что формула тысячных применима при не слишком больших углах - условной границей применимости формулы считается угол в 300 тысячных (18?).

Углы, выраженные в тысячных, записываются через дефис и читаются раздельно: сначала сотни, а затем десятки и единицы; при отсутствии сотен или десятков записывается и читается ноль. Например: 1705 тысячных записываются «17-05 », читаются – «семнадцать ноль пять »; 130 тысячных записываются «1-30 », читаются – « один тридцать »; 100 тысячных записываются «1-00 », читаются – «один ноль »; одна тысячная записывается «0-01 », читается – «ноль ноль один ».

Деления угломера, записанные до дефиса, иногда называют большими делениями угломера, а записанные после дефиса - малы­ми; одно большое деление угломера равно 100 малым делениям.

Деления угломера в градусную меру и обратно можно перевести, пользуясь следующими соотношениями:

1-00 = 6°; 0-01 = 3,6" = 216"; 0° = 0-00; 10" ≈ 0-03; 1° ≈ 0-17; 360° = 60-00.

Единица измерения углов, подобная тысячной, существует и в вооружённых силах стран НАТО. Там она называется mil (сокращение от milliradian), но определяется как 1/6400 окружности. В армии Швеции, не входящей в НАТО, принято наиболее точное определение в 1/6300 окружности. Однако, делитель 6000, принятый в советской, российской и финской армиях, лучше подходит для устного счёта, так как он делится без остатка на 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30, 40, 50, 60, 100, 150, 200, 250, 300, 400, 500 и т.д. вплоть до 3000, что позволяет быстро переводить в тысячные углы, полученные грубым измерением на местности подручными средствами.

§ 1.4.2. Измерение углов, расстояний (дальностей), определение высоты предметов

Рис. 4.2 Угловые величины между пальцами руки, вытянутой на 60 см от глаза

Измерение углов в тысячных может производиться различными способами: глазомерно, с помощью циферблата часов, компаса, артиллерийской буссоли , бинокля, снайперского прицела, линейки, и т.д.

Глазомерное определение угла заключается в сопоставлении измеряемого угла с известным. Углы определенной величины можно получить следующими способами. Прямой угол получается между направлением рук, одна из которых вытянута вдоль плеч, а другая - прямо перед собой. От составленного таким приемом угла можно отложить какую-то часть его, имея в виду, что 1/2 часть соответствует углу 7-50 (45°), 1/3 - углу 5-00 (30°) и т.д. Угол 2-50 (15°) получается путем визирования через большой и указательный пальцы, расставленные под углом 90° и удаленные на 60 см от глаза, а угол 1-00 (6°) соответствует углу визирования на три сомкнутых пальца: указательный, средний и безымянный (рис.4.2).

Определение угла по циферблату часов. Часы держат перед собой горизонтально и поворачивают их так, чтобы штрих, соответствующий 12 часам на циферблате, совместился с направлением левой стороны угла. Не меняя положения часов, замечают пересечение направления правой стороны угла с циферблатом и отсчитывают количество минут. Это и будет величина угла в больших делениях угломера. Например, отсчет 25 минут соответствует 25-00.

Определение угла компасом. Визирное приспособление компаса предварительно совмещают с начальным штрихом лимба, а затем визируют по направлению левой стороны измеряемого угла и, не меняя положения компаса, против направления правой стороны угла снимают отсчет по лимбу. Это и будет величина измеряемого угла или его дополнение до 360° (60-00), если подписи на лимбе идут против хода часовой стрелки.

Рис. 4.3 Буссоль

Величину угла компасом можно определить более точно, измерив азимуты направлений сторон угла. Разность азимутов правой и левой сторон угла будет соответствовать величине угла. Если разность получится отрицательной, то необходимо прибавить 360° (60-00). Средняя ошибка определения угла этим способом составляет 3-4°.

Определение угла артиллерийской буссолью ПАБ-2А (буссоль - прибор для топографической привязки и управления артиллерийским огнем, представляющий собою соединение компаса с угломерным кругом и оптическим приспособлением, рис.4.3).

Для измерения горизонтального угла буссоль устанавливают над точкой местности, выводят пузырек уровня на середину и трубу последовательно наводят сначала на правый, потом на левый предмет, точно совмещая вертикальную нить перекрестия сетки с точкой наблюдаемого предмета.

При каждом наведении снимают отсчет по буссольному кольцу и барабану. Затем выполняют второй прием измерений, для чего буссоль поворачивают на произвольный угол и повторяют действия. В обоих приемах величина угла получается как разность отсчетов: отсчет на правый предмет минус отсчет на левый предмет. За окончательный результат принимают среднее значение.

При измерении углов буссолью каждый отсчет складывается из отсчета больших делений буссольного кольца по указателю, отмеченному буквой Б, и малых делений буссольного барабана, обозначенного той же буквой. Пример отсчетов на рис.4.4 по буссольному кольцу - 7-00, по буссольному барабану - 0-12; полный отсчет - 7-12.


Рис. 4.4 Отсчетное устройство буссоли, используемое для измерения горизонтальных углов:
1 - буссольное кольцо;
2 - буссольный барабан

С помощью линейки . Если линейку держать на расстоянии 50 см от глаз, то деление в 1 мм будет соответствовать 0-02. При удалении линейки от глаз на 60 см 1 мм соответствует 6", а 1 см - 1°. Для измерения угла в тысячных линейку держат перед собой на расстоянии 50 см от глаз и подсчитывают число миллиметров между предметами, обозначающими направления сторон угла. Полученное число умножают на 0-02 и получают величину угла в тысячных (рис.4.5). Для измерения угла в градусах порядок действий тот же, только линейку необходимо держать на расстоянии 60 см от глаз.


Рис. 4.5 Измерение угла линейкой, удаленной на 50 см от глаза наблюдателя

Точность измерения углов с помощью линейки зависит от умения выносить линейку точно на 50 или на 60 см от глаз. В этой связи можно рекомендовать следующее: к артиллерийскому компасу привязывается шнурок такой длины, чтобы линейка компаса, повешенного на шею и отнесенного вперед на уровень глаза наблюдателя, оказывалась от него на расстоянии ровно 50 см.

Пример: зная, что среднее расстояние между столбами линии связи, изображенными на рис.1.4.5, составляет 55 м, вычисляем расстояние до них по формуле тысячной: Д = 55 x 1000 / 68 = 809 м (линейные размеры некоторых предметов приведены в таблице 4.1) .

Таблица 4.1

Измерение угла биноклем . Крайний штрих шкалы в поле зрения бинокля совмещают с предметом, расположенным в направлении одной из сторон угла, и, не меняя положения бинокля, подсчитывают число делений до предмета, расположенного в направлении другой стороны угла (рис.4.6). Полученное число умножают на цену делений шкалы (обычно 0-05). Если шкала бинокля не захватывает полностью угол, то он измеряется по частям. Средняя ошибка измерения угла биноклем составляет 0-10.

Пример (рис.4.6): угловая величина американского танка «Абрамс», определенная по шкале бинокля, составила 0-38, учитывая, что ширина танка составляет 3,7 м, расстояние до него, вычисленное по формуле тысячной, Д = 3,7х 1000 / 38 ≈ 97 м.

Измерение угла снайперским прицелом ПСО-1 . На сетке прицела нанесены (рис.4.7):шкала боковых поправок (1); основной (верхний) угольник для прицеливания при стрельбе до 1000 м (2); дополнительные угольники (ниже шкалы боковых поправок по вертикальной линии) для прицеливания при стрельбе на 1100, 1200 и 1300 м (3); дальномерная шкала в виде сплошной горизонтальной и кривой пунктирной линий (4).

Шкала боковых поправок обозначена снизу (влево и вправо от угольника) цифрой 10, что соответствует десяти тысячным (0-10). Расстояние между двумя вертикальными черточками шкалы соответствует одной тысячной (0-01). Высота угольника и длинного штриха шкалы боковых поправок соответствует двум тысячным (0-02). Дальномерная шкала рассчитана на высоту цели 1,7 м (средний рост человека). Это значение высоты цели указано под горизонтальной линией. Над верхней пунктирной линией нанесена шкала с делениями, расстояние между которыми соответствует расстоянию до цели в 100 м. Цифры шкалы 2, 4, 6, 8, 10 соответствуют расстояниям 200, 400, 600, 800, 1000 м. Определить дальность до цели с помощью прицела можно по дальномерной шкале (рис.4.8), а также по шкале боковых поправок (см. алгоритм измерения углов биноклем).

Зная расстояние до предмета в метрах и его угловую величину в тысячных можно вычислить его высоту по формуле В = Д x У / 1000 , полученной из формулы тысячных. Пример: расстояние до башни 100 м, а ее угловая величина от основания до верха 2-20, соответственно, высота башни В = 100 x 220 / 1000 = 22 м.

Глазомерное определение расстояний производится по признакам видимости (степени различаемости) отдельных предметов и целей (табл.4.2).

Признаки видимости Дальность
Видны дома сельского типа 5 км
Различаются окна в домах 4 км
Видны отдельные деревья, трубы на крышах 3 км
Видны отдельные люди; танки от автомобилей (БТР, БМП) отличить трудно 2 км
Танк можно отличить от автомобиля (БТР, БМП); видны столбы линий связи 1,5 км
Виден ствол пушки; различаются стволы деревьев в лесу 1 км
Заметны движения рук и ног идущего (бегущего) человека 0,7 км
Видны командирская башенка танка, дульный тормоз, заметно движение гусениц 0,5 км

Таблица 4.2

Расстояние (дальность) глазомерно можно определить сравнением с другим, заранее известным расстоянием (н-р, с расстоянием до ориентира) или отрезками 100, 200, 500 м.

На точность глазомерного определения расстояний существенно влияют условия наблюдения:

  • ярко освещенные предметы кажутся ближе слабо освещенных;
  • в пасмурные дни, дождь, сумерки, туман все наблюдаемые предметы кажутся дальше, чем в солнечные дни;
  • крупные предметы кажутся ближе мелких, находящихся на том же расстоянии;
  • предметы яркой окраски (белой, желтой, оранжевой, красной) кажутся ближе темных (черных, коричневых, синих);
  • в горах, а также при наблюдении через водные пространства предметы кажутся ближе, чем в действительности;
  • при наблюдении лежа предметы кажутся ближе, чем при наблюдении стоя;
  • при наблюдении снизу вверх предметы кажутся ближе, а при наблюдении сверху вниз - дальше;
  • при наблюдении ночью светящиеся объекты кажутся ближе, а затемненные - дальше, чем в действительности.

Глазомерно определенное расстояние может быть уточнено следующими приемами:

  • расстояние мысленно делят на несколько равных отрезков (частей), затем возможно точнее определяют величину одного отрезка и путем умножения получают искомую величину;
  • расстояние оценивается несколькими наблюдателями, а за окончательный результат принимается среднее значение.

Глазомерно расстояние до 1 км при достаточной опытности можно определить со средней ошибкой порядка 10-20% дальности. При определении больших расстояний ошибка может доходить до 30-50%.

Определение дальности по слышимости звука применяется в условиях плохой видимости, преимущественно ночью. Примерные дальности слышимости отдельных звуков при нормальном слухе и благоприятных условиях погоды приведены в таблице 4.3.

Объект и характер звука Дальность слышимости
Негромкий разговор, кашель, негромкие команды, заряжание оружия и т.п. 0,1-0,2 км
Забивка в землю кольев вручную (равномерно повторяющиеся удары) 0,3 км
Рубка или пилка леса (стук топора, визг пилы) 0,4 км
Движение подразделения в пешем строю (ровный глухой шум шагов) 0,3-0,6 км
Падение срубленных деревьев (треск сучьев, глухой удар о землю) 0,8 км
Движение автомобилей (ровный глухой шум мотора) 0,5-1,0 км
Громкий крик, отрывка окопов (удары лопаты о камни) 1,0 км
Гудки автомобилей, одиночные выстрелы из автомата 2-3 км
Стрельба очередями, движение танков (лязг гусениц, резкий рокот моторов) 3-4 км
Орудийная стрельба 10-15 км

Таблица 4.3

Точности определения расстояний по слышимости звуков невысокая. Она зависит от опытности наблюдателя, остроты и натренированности его слуха и умения учитывать направление и силу ветра, температуру и влажность воздуха, характер сладок рельефа, наличие экранирующих поверхностей, отражающих звук, и другие факторы, влияющие на распространение звуковых волн.

Определение дальности по звуку и вспышке (выстрела, взрыва) . Определяют время от момента вспышке до момента восприятия звука и вычисляют дальность о формуле:

Д = 330·t ,

где Д - расстояние до места вспышки, м; t - время от момента вспышки до момента восприятия звука, с. При этом средняя скорость распространения звука принимается равной 330 м/с (Пример: звук был услышан через 10 с после вспышки, соответственно, расстояние до места взрыва равно 3300 м ).

Определение дальности с помощью мушки АК . Определение дальности до цели, сформировав соответствующий навык, можно осуществлять с помощью мушки и прорези прицела АК. При этом необходимо учитывать, что мушка полностью покрывает мишень №6 (ширина мишени 50 см ) на дистанции 100 м; мишень умещается в половине ширины мушки на дистанции 200 м; мишень умещается в четверти ширины мушки на дистанции 300 м (рис.4.9).


Рис. 4.9 Определение дальности с помощью мушки АК

Определение дальности промером шагами . При измерении расстояний шаги считают парами. Пару шагов можно принимать в среднем за 1,5 м. Для более точных подсчетов длину пары шагов определяют из промера шагами линии не менее 200 м, длина которой известна из более точных измерений. При равном, хорошо выверенном шаге погрешность измерения не превышает 5% пройденного расстояния.

Определение ширины реки (оврага и других препятствий) построением равнобедренного прямоугольного треугольника (рис.4.10).

Определение ширины реки построением равнобедренного прямоугольного треугольника

У реки (препятствия) выбирают точку А так, чтобы на ее противоположной стороне был виден какой-либо ориентир В и, кроме того, вдоль реки возможно было бы измерить линию. В точке А восстанавливают перпендикуляр АС к линии АВ и в этом направлении измеряют расстояние (шнуром, шагами и т.п.) до точки С , в которой угол АСВ будет равен 45°. В этом случае расстояние АС будет соответствовать ширине препятствия АВ . Точку С находят путем приближения, измеряя несколько раз угол АСВ каким-либо доступным способом (компасом, с помощью часов или глазомерно).

Определение высоты предмета по его тени . У объекта устанавливают в вертикальном положении веху (шест, лопату и т.п.), высота которой известна. Затем измеряют длину тени от вехи и от предмета. Высоту предмета подсчитывают по формуле

h = d 1 ·h 1 / d ,

где h – высота предмета, м; d 1 – высота тени от вехи, м;h 1 – высота вехи, м; d – длина тени от предмета, м. Пример: длина тени от дерева 42 м, а от шеста высотой 2 м – 3 м, соответственно, высота дерева h = 42· 2 / 3 = 28 м.

§ 1.4.3. Определение крутизны скатов

Горизонтальным визированием и промером шагами . Располагаясь внизу ската в точке А (рис.4.11-а ), устанавливают горизонтально на уровне глаз линейку, визируют вдоль нее и замечают на скате точку В. Затем парами шагов измеряют расстояние АВ и определяют крутизну ската по формуле:

α = 60 / n ,

где α – крутизна ската, град; n – количество пар шагов. Данный способ применим при крутизне ската до 20-25°; точность определения 2-3°.

Сравнением высоты ската с его заложением . Становятся сбоку ската и, удерживая перед собой на уровне глаз горизонтально, ребро папки и вертикально карандаш, как показано на рис.4.11-б , определяют на глаз или путем измерения число, показывающее, во сколько раз выдвинутая часть карандаша MN короче ребра папки ОМ. Затем 60 делят на полученное число и в результате определяют крутизну ската в градусах.

Для большей точности определения соотношений высоты ската и его заложения рекомендуется измерить длину ребра папки, а вместо карандаша использовать линейку с делениями. Способ применим при крутизне ската не более 25-30°; средняя ошибка определения крутизны ската составляет 3-4°.


Определение крутизны ската:
а – горизонтальным визированием и промером шагами;
б – сравнением высот ската с заложением

Пример: высота выдвинутой части карандаша равна 10 см, длина ребра папки 30 см; соотношение заложения и высоты ската равно 3 (30:10); крутизна ската будет 20° (60:3).

С помощью отвеса и офицерской линейки . Подготавливают отвес (нить с небольшим грузиком) и прикладывают его к офицерской линейке, придерживая пальцем нить у центра транспортира. Линейку устанавливают на уровне глаз так, чтобы ее ребро было направлено вдоль линии ската. В таком положении линейки определяют по шкале транспортира угол между штрихом 90° и нитью. Этот угол равен крутизне ската. Средняя ошибка измерения крутизны ската данным способом составляет 2-3°.

§ 1.4.4. Линейные меры

  • Аршин = 0,7112 м
  • Верста = 500 саженей = 1,0668 км
  • Дюйм = 2,54 см
  • Кабельтов = 0,1 морской мили = 185,3 м
  • Километр = 1000 м
  • Линия = 0,1 дюйма = 10 точек = 2,54 мм
  • Лье (Франция ) = 4,44 км
  • Метр = 100 см = 1000 мм = 3,2809 фута
  • Миля морская (США, Англия, Канада ) = 10 кабель­товых = 1852 м
  • Миля статутная (США, Англия, Канада ) = 1,609 км
  • Сажень = 3 аршина = 48 вершков = 7 футов = 84 дюйма = 2,1336 м
  • Фут = 12 дюймов = 30,48 см
  • Ярд = 3 фута = 0,9144 м

§ 1.4.5. Целеуказание по карте и на местности

Целеуказание – это краткое, понятное и достаточно точное указание местоположения целей и различных пунктов на карте и непосредственно на местности.

Целеуказание (указание пунктов) по карте производится по квадратам координатной (километровой) или географической сетки, от ориентира, прямоугольными или географическими координатами.

Целеуказание по квадратам координатной (километровой) сетки

Целеуказание по квадратам координатной сетки (рис.4.12-а ). Квадрат, в котором находится объект, указывают подписями километровых линий. Вначале дается оцифровка нижней горизонтальной линии квадрата, а затем левой вертикальной линии. В письменном документе квадрат указывают в скобках после наименования объект, например, выс. 206,3 (4698) . При устном докладе вначале указывают квадрат, а затем наименование объекта: «Квадрат сорок шесть девяносто восемь, высота двести шесть и три»

Для уточнения местоположения объекта квадрат мысленно делят на 9 частей, которые обозначают цифрами, как показано на рис.4.12-б. Цифру, уточняющую положение объекта внутри квадрата, добавляют к обозначению квадрата, например наблюдательный пункт (46006).

В отдельных случаях местоположение объекта в квадрате уточняют по частям, обозначаемым буквами, например, сарай (4498А) на рис.4.12- в.

На карте, охватывающей район протяженностью с юга на север или с востока на запад более 100 км, оцифровка километровых линий в двузначных числах может повториться. Для исключения неопределенности в положении объекта квадрат следует обозначать не четырьмя, а шестью цифрами (трехзначным числом абсциссу и трехзначным числом ординату), например, населенный пункт Льгов (844300) на рис.4.12-г.

Целеуказание от ориентира . При этом способе целеуказания вначале называют объект, потом расстояние и направление до него от хорошо заметного ориентира и квадрат, в котором расположен ориентир, например командный пункт - 2 км южнее Льгов (4400) на рис.4.12-д.

Целеуказание по квадратам географической сетки . Способ применяется, когда на картах отсутствует координатная (километровая) сетка. В этом случае квадраты (точнее, трапеции) географической сетки обозначаются географическими координатами. Вначале указывают широту нижней стороны квадрата, в котором находится пункт, а затем долготу левой стороны квадрата, например (рис.4.13-а ): «Ерино (21°20", 80°00") ». Квадраты географической сетки могут обозначаться и оцифровкой ближайших выходов километровых линий, если они показаны на сторонах рамки карты, например (рис.4.13-б ): «Снов (6412) ».


Целеуказание по квадратам географической сетки

Целеуказание прямоугольными координатами - наиболее точный способ; применяется для указания местоположения точечных целей. Цель обозначают полными или сокращенными координатами.

Целеуказание географическими координатами применяется сравнительно редко - при использовании карт без километровых сеток для точного указания места нахождения отдельных удаленных объектов. Объект обозначают географическими координатами: широтой и долготой.

Целеуказание на местности выполняют различными способами: от ориентира, от направления движения, по азимутальному указателю и др. Способ целеуказания выбирают, сообразуясь с конкретной обстановкой, так, чтобы он обеспечивал наиболее быстрое отыскание цели.

От ориентира . На поле боя заранее выбирают хорошо заметные ориентиры и присваивают им номера или условные наименования. Ориентиры нумеруют справа налево и по рубежам от себя в сторону противника. Местонахождение, вид, номер (наименование) каждого ориентира должны быть хорошо известны выдающему и принимающему целеуказание. При указании цели называют ближайший ориентир, угол между ориентиром и целью в тысячных и удаление в метрах от ориентира или позиции: « Ориентир второй, вправо тридцать, ниже сто - в кустах пулемет ».

Малозаметные цели указывают последовательно - вначале называют хорошо заметный предмет, а затем от этого предмета цель: « Ориентир четвертый, вправо двадцать - угол пашни, дальше двести - куст, влево - танк в окопе ».

При визуальной воздушной разведке цель от ориентира указывают в метрах по сторонам горизонта: « Ориентир двенадцатый, юг 200, восток 300 - шестиорудийная батарея ».

От направления движения . Указывают расстояние в метрах вначале по направлению движения, а затем от направления движения до цели: «Прямо 500, вправо 200 - БМ ПТУРС ».

Трассирующими пулями (снарядами) и сигнальными ракетами . Для указания целей этим способом заранее устанавливают ориентиры, порядок и длину очередей (цвет ракет), а для приема целей назначают наблюдателя с задачей наблюдать за указанным районом и докладывать о появлении сигналов.

§ 1.4.6. Нанесение на карту целей и других объектов

На глаз. На ориентированной карте опознают ближайшие к объекту ориентиры или контурные точки; оценивают расстояния и направления от них до объекта и, соблюдая их соотношения, наносят на карту точку, соответствующую местоположению объекта. Способ применяется при наличии вблизи объекта местных предметов, изображенных на карте.

По направлению и расстоянию. На исходной точке тщательно ориентируют карту и с помощью линейки прочерчивают направление на объект. Затем, определив расстояние до объекта, откладывают его по прочерченному направлению в масштабе карты и получают положение объекта на карте. При невозможности графического решения задачи измеряют магнитный азимут на объект и переводят его в дирекционный угол, по которому прочерчивают направление на карте, а затем на этом направлении откладывают расстояние до объекта. Точность нанесения на карту объекта данным способом зависит от ошибок определения расстояния до объекта и прочерчивания направления на него.


Нанесение на карту объекта прямой засечкой

Прямой засечкой. На исходной точке А (рис.4.14) тщательно ориентируют карту, визируют по линейке на определяемый объект и прочерчивают направление. Аналогичные действия повторяют на исходной точке В. Точка пересечения двух направлений определит положение объекта С на карте.

В условиях, затрудняющих работу с картой, на исходных точках измеряют магнитные азимуты на объект, а затем азимуты переводят в дирекционные углы и по ним прочерчивают направления на карте.

Этот способ применяется, если определяемый объект виден с двух исходных точек, доступных для наблюдения. Средняя ошибка положения на карте объекта, нанесенного прямой засечкой, относительно исходных точек составляет 7-10% средней дальности до объекта при условии, что угол пересечения направлений (угол засечки) находится в пределах 30-150°. При углах засечки менее 30? и более 150° ошибка положения объекта на карте будет значительно больше. Точность нанесения объекта может быть несколько повышена путем засечки его с трех точек. В этом случае при пересечении трех направлений обычно образуется треугольник, центральная точка которого принимается за положение объекта на карте.

Прокладкой хода. Способ применяется в тех случаях, когда объект не виден ни с одной контурной (исходной) точки, например в лесу. На исходной точке, расположенной возможно ближе к определяемому объекту, ориентируют карту и, наметив наиболее удобный путь к объекту, прочерчивают направление на какую-либо промежуточную точку. На этом направлении откладывают соответствующее расстояние и определяют положение промежуточной точки на карте. С полученной точки такими же приемами определяют положение на карте второй промежуточной точки и далее подобными действиями определяют все последующие точки хода до объекта.

В условиях, исключающих работу с картой на местности, вначале измеряют азимуты и длины всех линий хода, записывают их и одновременно чертят схему хода. Затем в подходящих условиях по этим данным, преобразовав магнитные азимуты в дирекционные углы, наносят ход на карту и определяют положение объекта.


Нанесение на карту объекта прокладкой компасного хода

При обнаружении цели в лесу или в других условиях, затрудняющих определение своего местоположения, ход прокладывают в обратном порядке (рис.4.15). Вначале с точки наблюдения А определяют азимут и расстояние до цели Ц , а затем от точки А прокладывают ход до точки D , которую можно безошибочно опознать на карте. В этом случае азимуты линий хода переводят в обратные, обратные азимуты - в дирекционные углы и по ним строят на карте ход от твердой точки.

Средняя ошибка нанесения объекта на карту данным способом при определении азимутов компасом, а расстояний шагами составляет примерно 5% длины хода. Примером комплексного использования вышеуказанных способов нанесения на карту целей может являться эпизод действий разведгруппы - схема действий приведена на рис. 4.16.

Схема действий разведгруппы

1 – расположение абхазского ополчения; 2 – посты грузинских формирований; 3 – боевое охранение грузинских формирований; 4 - боевое охранение абхазских ополченцев; 5 – разведдозор группы в точке снятия координат; 6 – разведгруппа; 7 – техника грузинских формирований; 8 – расположение грузинских формирований

Пользуясь предрассветными сумерками, разведгруппа возвращалась после выполнения задачи на территорию, занятую абхазским ополчением. Неожиданно, при подходе к передовым постам грузинских формирований, группа наткнулась на боевое охранение противника.

Просочившись за боевое охранение, командир группы принял решение провести доразведку данного участка. С этой целью был выделен разведдозор с задачей обследовать участок местности, прилегающий к дороге на Батуми.

Выполняя задачу, разведдозор обнаружил скопление живой силы и техники противника на склоне выше дороги. Сержант (старший разведдозора), учитывая сложность определения координат расположения противника в сложившихся условиях (местность резкопересеченная и поросшая густым лесом, плохая видимость в предрассветных сумерках), определил координаты по следующей схеме. Находясь на расстоянии 80-90 м от расположения противника, и определив, что от центра расположения до непосредственного охранения не более 50-70 м, сержант с дозором поднялся вверх по склону (примерный азимут - 0°), доведя свое расположение до 100 м от непосредственного охранения. Затем, взяв азимут так, чтобы дирекционный угол при нанесении на карту был равен 0°, начал подъем по склону на гребень отрога, отсчитывая пары шагов - при выходе на гребень получилось, что дозор прошел около 300 м. Учитывая крутизну ската, определил прямое расстояние до центра расположения противника (рис. 4.16, изображение в круге ): 250+100+70=420 м.

На гребне отрога в конце пройденного азимута было выбрано дерево, поднявшись на которое, сержант попытался определить точку своего стояния. К северо-западу от этой точки на фоне светлеющего предрассветного неба четко проектировалась отмеченная на карте вышка, расположенная на одной из вершин хребта.

Понимая, что одного этого ориентира недостаточно для определения точки своего стояния, сержант принялся искать дополнительные ориентиры, обозначенные на карте, и нашел ориентир в виде автомобильного моста к юго-западу. Взяв азимут на вышку, перевел его в дирекционный угол, и, отняв 180°, проложил его до пересечения с гребнем отрога, тем самым получив достаточно точные координаты своей точки стояния. Оставалось проложить дирекционный угол 180° на расположение противника и отложить уже вычисленное расстояние - 420 м.

Присоединившись к группе, сержант, доложил командиру вычисленные координаты цели. Командир, оценив достоверность информации и правильность расчетов, принял решение на наведение огня своей артиллерии. После первого пристрелочного выстрела, расчет 120-мм миномета, имевшегося в распоряжении абхазского ополчения, дал серию из 6 мин, четко поразив расположение противника.

_Toc293671468

Введение 2

1. Понятие тысячной и способы измерения её 3

2. Глазомерный способ 5

3. Способ измерения по угловым размерам 7

4. Способ измерения по линейной величине 10

5. Способ измерения шагами 11

6. Способ измерения по времени и скорости движения 12

7. Способ измерения по соотношению скорости света и звука 13

8. Способ измерения на слух 13

Заключение 18

Список литературы 19

Приложение 20

Введение

Организация и ведение боевых действий неразрывно связаны с ориентированием на местности. Оно необходимо при постановке боевых задач подразделениям и огневым средствам, выдерживании направления действий, целеуказании, нанесении на рабочую карту результатов разведки противника и местности, управлении подразделениями в ходе боя. Потеря ориентировки в бою может привести к невыполнению боевой задачи и неоправданным потерям личного состава и техники. Поэтому умение быстро и точно ориентироваться на местности в любых условиях является одним из важнейших элементов полевой выучки офицеров.

Применение в бою современных огневых средств требует производства точных измерений и расчетов по привязке огневых и стартовых позиций, определение расстояний до целей. С этой целью в войсках используются различного рода измерения с помощью разных приборов. Для измерений на местности широко используются топографические карты.

Однако в современном бою, когда успех зависит от быстрого принятия решения, когда на принятие решения требуется короткое время, необходимо, чтобы каждый военнослужащий, а тем более офицер, должен уметь быстро и с высокой точностью производить измерения и расчеты на местности, особенно по определению расстояний до целей.

Это особенно важно для командиров мотострелковых подразделений. Командиры мотострелковых подразделений при ведении боя обязаны управлять подразделениями и огнем на местности, определение расстояний и углов при разведке целей играют очень важную роль для быстрейшего уничтожения противника.

Определение расстояний на местности командиру необходимо для управления подразделением в бою. Особенно большое влияние определение расстояний оказывает на ведение огня из различных видов оружия.

1. Понятие тысячной и способы измерения её

Тысячная - единица измерения углов, принятая в артиллерии и равняющаяся одной шеститысячной части оборота. Название происходит от приблизительного равенства такой единицы измерения углов миллирадиану, то есть тысячной доле радиана (составляющей 1/(1000 × 2 π) ≈ 1/6283 оборота). Синонимом для этой единицы измерения угла является малое деление угломера.

Понятие тысячной принято во всех странах мира, и применяется для введения горизонтальных поправок ведения огня стрелкового оружия и артиллерийских систем, а также определение расстояний и дистанций. Тысячные записываются и читаются следующим образом:

тысячная 0-01, читается как ноль, ноль один

тысячных 0-05, читается как ноль, ноль пять

тысячных 0-10, читается как ноль, десять

тысячных 1-50, читается как один, пятьдесят

тысячных 15-00, читается как пятнадцать, ноль ноль

При использовании оптических приборов с делениями в тысячных нужно учитывать, что есть русская тысячная, которая делит круг на 6000 частей и есть немецкая тысячная, которая делит круг на 6400 частей.

Исходя из равенства 1 оборота 2π радиан или 360 градусам, существуют следующие соотношения между всеми этими единицами измерения:

· 1 тысячная ≈ 0,00016(6) оборота

· 1 тысячная ≈ 0,001047 радиана

· 1 тысячная = 0,06 градуса = 3,6 угловой минуты = 3 угл. минуты 36 угл. секунд

· 1 тысячная = 0,06(6) града

· 1 оборот = 6000 тысячных

· 1 радиан ≈ 954,92 тысячных

· 1 угловая секунда = 0,004629(629) тысячной

· 1 угловая минута = 0,277(7) тысячной

· 1 градус = 16,66(6) тысячных

· 1 град = 15 тысячных

Большим удобством такой нестандартной единицы измерения углов является хорошая приспособленность к вычислениям линейных и угловых размеров объектов на местности без каких-либо средств механизации счёта. Пусть объект длиной W наблюдается с дистанции L под небольшим углом α (то есть выполняется условие L >> W , очень часто встречающееся в артиллерийской практике). Тогда при выражении угла α в радианной мере имеет место:

и, заменяя радианную меру на тысячные, получаем в итоге:


Для большинства практических расчётов используется приближённый вариант, но в ряде случаев возникающая при этом погрешность в 4,5 % недопустима и тогда коэффициент 0,955 не отбрасывается. Упрощённое равенство называется формулой тысячных. Из этой формулы следует правило для лучшего запоминания соотношения: «веха высотой 1 метр, удалённая от наблюдателя на 1 километр, видна под углом в 1 тысячную».

Формула тысячных применима при не слишком больших углах, когда синус угла приближённо равен самому углу в радианной мере. Условной границей применимости считается угол в 300 тысячных (18 градусов).

2. Глазомерный способ

Глазомерный способ - основной способ и самый простой при определении расстояний, доступный для каждого командира. Сущность способа - сравнение определяемого расстояния с известным или запечатленным в памяти.

Этот способ не дает высокой точности в определении расстояний, но при определенной тренировке можно добиться точности до 10 м. Чтобы развить свой глазомер нужно постоянно упражняться в определении расстояний на местности.

Глазомерно расстояние определяют путем сравнения с известным на местности отрезком. На точность глазомерного определения расстояния оказывают влияние освещенность, размеры объекта, его контраст с окружающим фоном, прозрачность атмосферы и другие факторы. Расстояния кажутся меньшими, чем в действительности, при наблюдении через водные пространства, лощины и долины, при наблюдении крупных и отдельно расположенных объектов.

И наоборот, расстояния кажутся большими, чем в действительности, при наблюдении в сумерках, против света, в туман, при пасмурной и дождливой погоде. Все эти особенности следует учитывать при глазомерном определении расстояний.

Точность глазомерного определения расстояний зависит также от натренированности наблюдателя. Опытным наблюдателем расстояния до 1000 м могут быть определены глазомерно с ошибкой 10-15%. При определении расстояния более 1000 м ошибки могут достигать 30%, а при недостаточной опытности наблюдателя 50%.

Одним из способов измерения расстояний на местности это использование известных по протяженности расстояний на местности (линии электропередач - расстояние между опорами, расстояние между линиями связи и т.п.).

Для грубой оценки расстояний на местности можно использовать следующие данные (табл.1):

Таблица 1

Расстояния видимости (различимости) некоторых объектов невооруженным глазом


Для каждого человека данная таблица может быть уточнена им самим. Чтобы развить свой глазомер, необходимо как можно чаще упражняться в определении на глаз расстояний с обязательной проверкой их шагами, по карте или другим способом.

Тренировку надо начинать с коротких расстояний (10, 50, 100 м). Хорошо освоив эти дистанции, можно переходить последовательно к большим (200, 400, 800, 1000 м). Потом можно легко определять расстояния и большие.

более крупные предметы кажутся всегда ближе мелких, расположенных на том же расстоянии;

чем меньше промежуточных предметов находится между глазом и наблюдаемым предметом, тем этот предмет кажется ближе;

при наблюдении снизу вверх, от подошвы горы к вершине, предметы кажутся ближе, а при наблюдении сверху вниз - дальше.

Глазомерная оценка расстояний может контролироваться, когда несколько человек измеряют одну и ту же дистанцию независимо друг от друга. Беря среднее из всех этих определений, получают наиболее точный замер.

. Способ измерения по угловым размерам

Для применения этого способа надо знать линейную величину наблюдаемого предмета (его высоту, длину либо ширину) и тот угол (в тысячных), под которым виден данный предмет. Угловые размеры предметов измеряют с помощью бинокля, приборов наблюдения и прицеливания и подручными средствами. Расстояние до предметов в метрах определяют по формуле:


где В - высота (ширина) предмета в метрах, У - угловая величина предмета в тысячных.

Например, высота железнодорожной будки составляет 4 метра, военнослужащий видит ее под углом 25 тысячных (толщина мизинца). Тогда расстояние до будки составит:


Или военнослужащий видит танк «Леопард-2» под прямым углом сбоку. Длина этого танка - 7 метров 66 сантиметров. Предположим, что угол наблюдения составляет 40 тысячных (толщина большого пальца руки). Следовательно, расстояние до танка - 191,5 метров.

Чтобы определить угловую величину подручными средствами, надо знать, что отрезку в 1 мм, удаленному от глаза на 50 см, соответствует угол в две тысячных (записывается: 0-02). Отсюда легко определить угловую величину для любых отрезков.

Например, для отрезка в 0,5 см угловая величина будет 10 тысячных (0-10), для отрезка в 1 см - 20 тысячных (0-20) и т.д. Точность определения расстояний по угловым величинам составляет 5-10% длины измеряемого расстояния.

Чтобы определить угловую величину, надо знать, что отрезку в 1 мм, удаленному от глаза на 50 см, соответствует угол в две тысячных (записывается: 0- 02). Отсюда легко определить угловую величину для любых отрезков (рис. 1).

Рис.1. Определение угловой величины для любых отрезков

Например, для отрезка в0,5 см угловая величина будет 10 тысячных (0-10), для отрезка в 1 см - 20 тысячных (0-20) и т.д. Проще всего выучить наизусть стандартные значения тысячных:

Таблица 2

Угловые величины (в тысячных долях дистанции)

Наименование предметов

Размер в тысячных

Толщина большого пальца руки

Толщина указательного пальца

Толщина среднего пальца

Толщина мизинца

Патрон по ширине дульца гильзы (7,62 мм)

Гильза по ширине корпуса

Карандаш простой

Спичечная коробка по длине

Спичечная коробка по ширине

Спичечная коробка по высоте

Толщина спички


4. Способ измерения по линейной величине

Определение расстояний по линейным размерам предметов заключается в следующем. С помощью линейки, расположенной на расстоянии 50 см от глаза, измеряют в миллиметрах высоту (ширину) наблюдаемого предмета. Затем действительную высоту (ширину) предмета в сантиметрах делят на измеренную по линейке в миллиметрах, результат умножают на постоянное число 5 и получают искомую высоту предмета в метрах.

Например, телеграфный столб высотой 6 м (см. рисунок) закрывает на линейке отрезок 10 мм.

Рис.2. Определение расстояний по линейным размерам предмета

Следовательно, расстояние до него:


Точность определения расстояний по линейным величинам составляет 5-10% длины измеряемого расстояния.

Для определения расстояний по угловым и линейным размерам предметов рекомендуется запомнить величины (ширину, высоту, длину) некоторых из них, либо иметь эти данные под рукой (на планшете, в записной книжке). Размеры наиболее часто встречаемых объектов приведены в Приложении.

5. Способ измерения шагами

измерение расстояние видимость размер

Этот метод определения расстояний в боевой обстановке имеет ограниченное применение

Этот способ применяется обычно при движении по азимуту, составлении схем местности, нанесении на карту (схему) отдельных объектов и ориентиров и в других случаях. Счет шагов ведется, как правило, парами. При измерении расстоянии большой протяженности шаги более удобно считать тройками попеременно под левую и правую ногу. После каждой сотни пар или троек шагов делается отметка каким-нибудь способом и отсчет начинается снова. При переводе измеренного расстояния шагами в метры число пар или троек шагов умножают на длину одной пары или тройки шагов. Например, между точками поворота на маршруте пройдено 254 пары шагов. Длина одной пары шагов равна 1,6 м.

Тогда Д =254Х1,6=406,4 м.

Обычно шаг человека среднего роста равен 0,7- 0,8 м. Длину своего шага достаточно точно можно определить по формуле

Д=(Р/4)+0,37,

где Д-длина одного шага в метрах

Р - рост человека в метрах.

Например, если рост человека 1,72 м, то длина его шага

Д=(1,72/4)+0,37=0,8 м.

Более точно длина шага определяется промером какого-нибудь ровного линейного участка местности, например дороги, протяженностью 200-300 м, который заранее измеряется мерной лентой (рулеткой, дальномером и т. п.). При приближенном измерении расстояний длину пары шагов принимают равной 1,5 м.

Средняя ошибка измерения расстояний шагами в зависимости от условий движения составляет около 2-5% пройденного расстояния.

Счет шагов может выполняться с помощью шагомера (рис.3).

Он имеет вид и размеры карманных часов. Внутри прибора помещен тяжелый молоточек, который при встряхивании опускается, а под воздействием пружины возвращается в первоначальное положение. При этом пружина перескакивает по зубцам колесика, вращение которого передается на стрелки. На большой шкале циферблата стрелка показывает число единиц и десятков шагов, на правой малой-сотни, а на левой малой-тысячи. Шагомер подвешивают отвесно к одежде. При ходьбе вследствие колебания его механизм приходит в действие и отсчитывает каждый шаг.


Рис.3 Шагомер

6. Способ измерения по времени и скорости движения

Этот способ применяется для приближенного определения величины пройденного расстояния, для чего среднюю скорость умножают на время движения. Средняя скорость пешехода около 5, а при движении на лыжах 8-10 км/ч. Например, если разведывательный дозор двигался на лыжах 3 ч, то он прошел около 30 км.

7. Способ измерения по соотношению скорости света и звука

Этот способ позволяет быстро определить расстояние до стреляющих орудий, минометов, танков и др. огневых средств.

Звук распространяется в воздухе со скоростью 330 м/с, т. е. округленно 1 км за 3 с, а свет- практически мгновенно (300000 км/ч). Таким образом, расстояние в километрах до места вспышки выстрела (взрыва) равно числу секунд, прошедших от момента вспышки до момента, когда был услышан звук выстрела (взрыва), деленному на 3. Например, наблюдатель услышал звук взрыва через 11 с после вспышки. Расстояние до места вспышки Д=11/3 = 3,7км.

8. Способ измерения на слух

Ночью и в туман, когда наблюдение ограничено или вообще невозможно (а на сильно пересеченной местности и в лесу, как ночью, так и днем) на помощь зрению приходит слух.

Почти все звуки, означающие опасность, производятся человеком. Поэтому если военнослужащий слышит даже самый слабый подозрительный шум, он должен замереть на месте и слушать. Возможно, что недалеко от него затаился враг. Если противник начнет двигаться первым, выдав тем самым свое месторасположение, то он первым и погибнет. Если это сделает разведчик, такая участь постигнет его.

В тихую летнюю ночь даже обычный человеческий голос на открытом пространстве слышно далеко, иногда на полкилометра. В морозную осеннюю или зимнюю ночь всевозможные звуки и шумы слышны очень далеко. Это касается и речи, и шагов, и звяканья посуды либо оружия. В туманную погоду звуки тоже слышны далеко, но их направление определить трудно. По поверхности спокойной воды и в лесу, когда нет ветра, звуки разносятся на очень большое расстояние. А вот дождь сильно глушит звуки. Ветер, дующий в сторону военнослужащего, приближает звуки, а от него - удаляет. Он также относит звук в сторону, создавая искаженное представление о местонахождении его источника. Горы, леса, здания, овраги, ущелья и глубокие лощины изменяют направление звука, создавая эхо. Порождают эхо и водные пространства, способствуя его распространению на большие дальности.

Звук меняется, когда источник его передвигается по мягкой, мокрой или жесткой почве, по улице, по проселочной или полевой дороге, по мостовой или покрытой листьями почве. Необходимо учитывать, что сухая земля лучше передает звуки, чем воздух. Ночью звуки особенно хорошо передаются через землю. Потому часто прислушиваются, приложив ухо к земле или к стволам деревьев.

Натренированный слух - хороший помощник в определении расстояний ночью. Успешное применение этого способа во многом зависит от выбора места для прослушивания. Оно выбирается таким образом, чтобы ветер не попадал прямо в уши. Вокруг в радиусе нескольких метров устраняются причины шума, например сухая трава, ветки кустарника и т. п. В безветренную ночь при нормальном слухе различные источники шумов могут быть слышны на дальностях, указанных в табл. 3.

Таблица 3

Средняя дальность слышимости различных звуков днем на ровной местности, км (летом)

Источник звука (действия противника)

Слышимость звука

Характерные звуковые признаки

Шум двигающегося поезда

Паровозный или пароходный гудок, заводская сирена

Стрельба очередями из винтовок и пулеметов

Выстрел из охотничьего ружья

Автомобильный сигнал

Топот лошадей на рыси по мягкому грунту

Топот лошадей на рыси по шоссе

Крик человека

Ржание лошадей, лай собак

Разговорная речь

Всплеск воды от весел

Звяканье котелков, ложек

Переползание

Движение пехоты в строю по грунту

Ровный глухой шум

Движение пехоты в строю по шоссе


Стук весел о борт лодки

Отрывка окопов вручную

Удары лопаты по камням

Вбивание деревянных колье вручную

Вбивание деревянных колье механическим способом


Рубка и спиливание деревьев ручным способом (топором, ручной пилой)

Резкий стук топора, визг пилы, прерывистый звук бензинового двигателя, глухой удар о землю спиленного дерева

Спиливание деревьев бензопилой


Падение дерева


Движение автомобилей по грунтовой дороге

Ровный шум моторов

Движение автомобилей по шоссе


Движение танков, САУ, БМП по грунту

Резкий шум двигателей одновременно с резким металлическим лязгом гусениц

Движение танков, САУ, БМП по шоссе


Шум двигателя стоящего танка, БМП

Движение буксируемой артиллерии по грунту

Резкий отрывистый грохот металла и шум двигателей

Движение буксируемой артиллерии по шоссе


Стрельба артиллерийской батареи (дивизиона)

Выстрел из орудия

Стрельба из минометов

Стрельба из крупнокалиберных пулеметов

Стрельба из автоматов

Одиночный выстрел из винтовки


Существуют определенные способы, помогающие слушать ночью, а именно:

· лежа: приложить ухо к земле;

· стоя: один конец палки прислонить к уху, другой конец упереть в землю;

· стоять, слегка наклонившись вперед, перенеся центр тяжести тела на одну ногу, с полуоткрытым ртом, - зубы являются проводником звука.

Обученный военнослужащий при подкрадывании, если только ему дорога жизнь, ложится на живот и слушает лежа, стараясь определить направление звуков. Это легче сделать, повернув одно ухо в ту сторону, откуда доносится подозрительный шум. Для улучшения слышимости рекомендуется при этом приложить к ушной раковине согнутые ладони, котелок, отрезок трубы.

Для лучшего прослушивания звуков военнослужащий может приложить ухо к положенной на землю сухой доске, которая выполняет роль собирателя звука, или к сухому бревну, вкопанному в землю.

При необходимости можно изготовить самодельный водяной стетоскоп. Для этого используется стеклянная бутылка (либо металлическая фляга), заполненная водой до горловины, которую зарывают в грунт до уровня воды в ней. В пробку плотно вставляют трубку (пластмассовую), на которую одевают резиновую трубку. Другой конец резиновой трубки, снабженный наконечником, вставляют в ухо. Для проверки чувствительности прибора ударить пальцем землю на расстоянии 4 м от него (звук от удара ясно слышен через резиновую трубку).

При обучении распознаванию звуков необходимо воспроизводить с учебной целью следующее:

· Отрывку траншей.

· Сбрасывание мешков с песком.

· Ходьбу по дощатому настилу.

· Забивание металлического штыря.

· Звук при работе затвором автомата (при открывании и закрывании его).

· Постановку часового на пост.

· Часовой зажигает спичку и закуривает сигарету.

· Нормальный разговор и шепот.

· Сморканье и кашель.

· Треск ломающихся веток и кустарника.

· Трение ствола оружия о стальную каску.

· Хождение по металлической поверхности.

· Перерезание колючей проволоки.

· Перемешивание бетона.

· Стрельбу из пистолета, автомата, пулемета одиночными выстрелами и очередями.

· Шум двигателя танка, БМП, БТР, автомобиля на месте.

· Шум при их движении по грунтовой дороге и по шоссе.

· Лай и повизгивание собак.

· Шум вертолета, летящего на различной высоте.

Заключение

Командиры мотострелковых подразделений должны уметь определять расстояния различными способами: глазомерно, при помощи дальномерной шкалы прицелов и приборов наблюдения и по измеренной угловой величине предметов на местности, по спидометру машины, промером шагами, по средней скорости движения.

В основе любого способа определения расстояний лежит умение выбирать на местности ориентиры и использовать их как метки, указывающие нужные направления, пункты и рубежи.

Выбор и определение ориентиров важное мероприятие в работе командира при работе на местности.

Список литературы

1. Баранов А.Р., Маслак Ю.Г., Ягодинцев В.И. Военная топография в служебно-боевой деятельности оперативных подразделений - М.: Академический Проект, 2005.

2. Военная топография. // Под общ. ред. В. Н. Филатова: учебник для высших военно-учебных заведений. - Воениздат, 2008.

Военная топография.// Под редакцией А. В. Маркеленко. - М.: Издательство "Феникс", 2008.

Измерение и ориентирование на местности без карты. Движение по азимутам. Лекция. Уральский Государственный университет им. А. М. ГОРЬКОГО. - Екатеринбург, 2003.

Пресняков П.Р., Андриясов А.Т. Военная топография.- М.: Издательство Феникс, 2008.

Приложение

Линейные размеры некоторых предметов

Наименование предметов

Рост среднего человека (в обуви)

Стрелок с колена

Телеграфный столб

Обычный смешанный лес

Железнодорожная будка

Одноэтажный дом с крышей

Всадник верхом

БТР и БМП

Один этаж жилого капитального дома

Один этаж промышленного строения

Расстояние между столбами линии связи

Расстояние между опорами электросети высокого напряжения

Заводская труба

Вагон пассажирский цельнометаллический

Вагоны товарные двухосные

Вагоны товарные многоосные

Железнодорожные цистерны двухосные

Железнодорожные цистерны четырехосные

Железнодорожные платформы двухосные

Железнодорожные платформы четырехосные

Автомобили грузовые двухосные

Автомобили легковые

Тяжелый крупнокалиберный пулемет

Станковый пулемет

Мотоциклист на мотоцикле с коляской

Loading...Loading...