Состав топлива для твердотопливной ракеты. Секретное горючее: Пища богов

Вопрос снижения стоимости запусков ракет-носителей стоял всегда. Во времена космической гонки СССР и США мало задумывались о затратах - престиж страны стоил неизмеримо дороже. Сегодня сокращение расходов «по всем фронтам» стало общемировым трендом. Топливо составляет всего 0,2…0,3% от стоимости всей ракеты-носителя, но кроме стоимости топлива важен еще такой параметр, как его доступность. А здесь уже есть вопросы. За последние 50 лет список жидких горючих, широко использующихся в ракетно-космической отрасли мало изменился. Давайте же их перечислим: керосин, водород и гептил. Каждое из них имеет свои особенности и по-своему интересно, но у всех есть хотя бы один серьёзный недостаток. Вкратце рассмотрим каждое из них.

Керосин

Начал применяться ещё в 50-х годах и остаётся востребован и по сей день - именно на нём летают наша Ангара и Falcon 9 от SpaceX . Обладает множеством преимуществ, среди которых: высокая плотность, низкая токсичность, обеспечивает высокий удельный импульс, пока что приемлемая цена. Но производство керосина сегодня сопряжено с большими трудностями. Например, ракеты Союз, которые делают в Самаре, сейчас летают на искусственно созданном горючем, потому что изначально для создания керосина для этих ракет использовались только определенные сорта нефти из конкретных скважин. В основном это нефть Анастасиевско-Троицкого месторождения в Краснодарском крае. Но нефтяные скважины истощаются, и ныне используемый керосин является смешением композиций, которые добываются из нескольких скважин. Заветную марку РГ-1 получают с помощью дорогостоящей перегонки. По оценкам экспертов, проблема дефицита керосина будет только усугубляться.

«Ангара 1.1» на керосиновом двигателе РД-193

Водород

Сегодня водород, наряду с метаном, является одним из самых перспективных ракетных горючих. На нём летает сразу несколько современных ракет и разгонных блоков. В паре с кислородом он (после фтора) выдаёт самый высокий удельный импульс и для использования в верхних ступенях ракеты (или разгонных блоках) подходит идеально. Но чрезвычайно низкая плотность не позволяет в полной мере использовать его для первых ступеней ракет. Есть у него ещё один недостаток - высокая криогенность. Если ракета заправлена водородом, то он находится при температуре около 15 кельвинов (-258 по Цельсию). Это приводит к дополнительным затратам. Если сравнивать в керосином, то доступность водорода достаточно высока и его получение не является проблемой.

«Delta-IV Heavy» на водородных двигателях RS-68A

Гептил

Он же НДМГ или несимметричный диметилгидразин. У этого горючего всё ещё остаются сферы применения, но оно постепенно отходит на задний план. И причиной тому его высокая токсичность. Он обладает почти такими же, как керосин энергетическими показателями и является высококипящим компонентом (хранение при комнатной температуре) и, поэтому, в советское время использовался достаточно активно. Например, ракета Протон летает на высокотоксичной паре гептил+амил, каждый из которых способен убить человека, вдохнувшего по неосторожности их пары. Использование таких топлив в современное время неоправдано и является неприемлемым. Горючее находит применение в спутниках и межпланетных зондах, где оно, к сожалению, незаменимо.

«Протон-М» на гептиловых двигателях РД-253

Метан как альтернатива

Но есть ли топливо, которое удовлетворит всех и будет стоить дешевле всех? Возможно, это метан. Тот самый голубой газ, на котором некоторые из вас сегодня готовили пищу. Предлагаемое горючее является перспективным, активно осваивается другими отраслями промышленности, обладает более широкой сырьевой базой по сравнению с керосином и низкой стоимостью - это является важным моментом, учитывая прогнозируемые проблемы производства керосина. Метан как по плотности, так и по эффективности находится между керосином и водородом. Способы получения метана многочисленны. Главный источник метана природный газ, который состоит на 80..96% из метана. Остальное - это пропан, бутан и другие газы того же ряда, которые можно вообще не удалять, они очень схожи по свойствам с метаном. Другими словами, можно просто сжижать природный газ и использовать его как ракетное топливо. Метан можно получать и из других источников, например, переработкой отходов животноводства. Возможность использования метана в качестве ракетного топлива рассматривается уже на протяжении десятков лет, однако сейчас есть только стендовые варианты и экспериментальные образцы таких двигателей. Например, в химкинском НПО «Энергомаш» исследования в части использования сжиженного газа в двигателях велись с 1981 года. Прорабатываемая сейчас в «Энергомаше» концепция предусматривает разработку однокамерного двигателя тягой в 200 т на топливе «жидкий кислород - сжиженный метан» для первой ступени перспективного носителя легкого класса. Космическая техника ближайшего будущего обещает быть многоразовой. И тут открывается ещё одно преимущество метана. Он криогенный, а, значит, достаточно нагреть двигатель хотя бы до температуры -160 по Цельсию (а лучше выше) и двигатель сам освободится от компонентов топлива. По мнению специалистов он более всего подходит для создания многоразовых ракет-носителей. Вот что о метане думает главный конструктор НПО «Энергомаш» Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Ещё один довод в пользу использования метана - возможность добывать его на астероидах, планетах и их спутниках, обеспечивая возвращаемые миссии топливом. Там намного легче добывать метан, чем керосин. Естественно, о возможности привозить топливо с собой не может быть и речи. Перспектива таких дальних миссий, весьма отдалённая, но некоторые работы уже ведутся.

Будущее, которое так и не наступило

Так почему же метан в России так и не стал практически используемым горючим? Ответ достаточно прост. С начала 80-х в СССР, а потом и в России не было создано ни одного нового ракетного двигателя. Все российские «новинки» - это модернизация и переименование советского наследия. Единственный честно созданный комплекс - «Ангара» - с самого начала планировался как керосиновый транспорт. Его переделка обойдётся в копеечку. Вообще, Роскосмос постоянно отклоняет метановые проекты потому, что там связывают «добро» на хотя бы один подобный проект с «добром» на полную перестройку отрасли с керосина и гептила на метан, что считается долгим и дорогостоящим мероприятием.

Двигатели

На данный момент есть несколько компаний, заявляющих о скором использовании метана в своих ракетах. Двигатели, которые создаются:

FRE-1 /

Топливо для жидкостных ракетных двигателей, применяемых в составе космических разгонных блоков и ступеней ракетоносителей, содержит горючее на основе метана и окислитель, при этом в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. Применение предлагаемого топлива на ракетоносителях среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции ракетоносителя по сравнению с применением топлива метан + кислород на ~2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин + кислород масса выводимого полезного груза увеличится на ~ 7,5%.

Предлагаемое топливо предназначено для использования в жидкостных ракетных двигателях (ЖРД), применяемых в составе космических разгонных блоков (РБ) и ступеней ракетоносителей (РН). Аналогом данного топлива является топливо керосин+кислород . Жидкий кислород в настоящее время является одним из наиболее распространенных окислителей в топливах ЖРД. Это связано с тем, что жидкий кислород является экологически безопасным компонентом топлива. При этом он дешев, не токсичен, умеренно пожароопасен и обеспечивает достаточно высокие энергетические характеристики топлив. Например, топливо керосин+кислород при давлении в КС 70 ата и геометрической степени расширения сопла 40 обеспечивает удельный пустотный импульс на ~ 8% больший, чем топливо керосин+AT, где в качестве окислителя используется азотный тетраксид. Керосин представляет собой углеводородное горючее, являющееся смесью природных углеводородов, получаемых при перегонке нефти. Получение керосина из природной нефти обусловливает его относительную дешевизну. Кроме того, керосин является малотоксичным веществом, относящимся к 4-ому (низшему) классу опасности, умеренно пожароопасен и обладает достаточно высокой плотностью, что положительно сказывается на его эксплуатационных достоинствах. В целом топливо керосин+кислород, является эффективным топливом с достаточно высокой плотностью ~ 1000 кг/м 3 и достаточно высоким удельным импульсом истечения продуктов его сгорания, что позволяет достаточно эффективно решать существующие задачи, стоящие перед современными средствами выведения. К недостаткам топлива керосин+кислород относятся: относительно большая разница температур эксплуатации жидкого кислорода (~ 90 К) и керосина (~ 290 К), что требует принятия специальных мер, компенсирующих температурные напряжения, возникающие в баке хранения окислителя при заправке его жидким кислородом, и необходимость использования баков хранения компонентов с раздельными днищами и значительной теплоизоляцией между баками. Это ведет к существенному увеличению массы баков хранения компонентов и к увеличению объема, занимаемого баками хранения компонентов топлива в двигательной установке, что также увеличивает массовые затраты на хранение топлива. Прототипом предлагаемого топлива является топливо метан+кислород . Метан является основной составляющей природных газов, поэтому его производство, по оценкам, будет даже дешевле, чем производство керосина. По энергетическим характеристикам это топливо превосходит топливо керосин+кислород: при указанных выше давлениях в КС и геометрической степени расширения сопла удельный импульс топлива метан+кислород будет выше удельного импульса топлива керосин+кислород на ~ 4%. Однако метан даже при температуре 91 К (температура его плавления 90,66 К) обладает низкой плотностью 455 кг/м 3 , при этом плотность топлива метан+кислород всего 830 кг/м 3 , что приводит к увеличению массовых затрат на его хранение ввиду необходимости увеличения объема баков хранения компонентов. Низкая плотность топлива метан+кислород и невозможность переохлаждения кислорда при использовании баков хранения компонентов топлива с совмещенными днищами ведут к тому, что для космических РБ существенно (на 20% по сравнению с керосин+кислород) снижается время возможного хранения топлива в околоземном пространстве. Поскольку температура плавления метана выше температуры кипения кислорода при давлении 1 ата (т.е. выше 90 К), то использование баков хранения компонентов топлива с совмещенными днищами даже для кипящего при 1 ата кислорода (а тем более при использовании переохлажденного кислорода, который кипит при более низком давлении) невозможно без использования межбаковой теплоизоляции. Кроме того, поскольку бак горючего заправлен криогенным метаном, то его надо теплоизолировать от внешних теплопритоков, что дополнительно увеличивает массовые затраты на хранение топлива. Все это ведет к существенному по сравнению с топливом керосин+кислород увеличению массы и габаритов баков хранения топлива метан+кислород, что значительно, а в некоторых случаях вплоть до нуля, снижает эффект, который можно было бы получить от более высокого удельного импульса прототипа. Задачей изобретения является увеличение плотности топлива и, как следствие, массовых затрат на его хранение в топливных баках. Энергетические характеристики топлива при этом не ухудшаются по сравнению с прототипом. Это достигается при применении топлива, содержащего горючее и окислитель, где в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. При указанном содержании метана температура затвердевания такого горючего менее 90 К, т.е. при использовании в качестве окислителя, например, кипящего жидкого кислорода баки окислителя и горючего могут иметь общее днище, не покрытое теплоизоляцией. Кроме того, предлагаемое топливо для указанного интервала мольного соотношения метан - этилен будет иметь плотность от 900 до 970 кг/см 3 , что сравнимо с плотностью топлива керосин+кислород, а с учетом большой теплоемкости горючего в предлагаемом топливе возможное время пребывания космических РБ в околоземном пространстве будет таким же, как при использовании топлива керосин+кислород. При этом проведенные термодинамические расчеты показали, что удельный импульс продуктов истечения предлагаемого топлива будет таким же, как для топлива метан+кислород. Применение предлагаемого топлива на РН среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции РН по сравнению с применением топлива метан+кислород на ~ 2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин+кислород масса выводимого полезного груза увеличится на ~ 7,5%. Метан, как уже отмечалось выше, является основной составляющей природных газов, а этилен является широко распространенным сырьем для химической промышленности (например, при производстве полиэтилена), поэтому производство горючего для такого топлива не потребует создания новых производств и может быть освоено в достаточно короткие сроки. Стоимость предлагаемого топлива по оценкам будет сравнима со стоимостью топлива керосин+кислород. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Основы теории и расчета жидкостных ракетных двигателей /в 2-х книгах/ под ред. В. М. Кудрявцева, изд. 4-е перераб. и доп. - М. "Высшая школа", 1993. - кн.1, стр.130-134. 2. Паушкин Я. М. Химический состав и свойства реактивных топлив. - М. Издательство академии наук СССР, 1958.- 376 с., ил. стр.302. 3. Синярев Г.Б. Жидкостные ракетные двигатели. - М. Государственное издательство оборонной промышленности. 1955. -488 стр., ил. стр.159 - 161. 4. Справочник по физико-техническим основам криогеники. /М.П.Малков.- 3-е изд., перераб. и доп. - М.:Энергоатомиздат, 1985, -432 с., ил. стр.217. 5. Справочник по разделению газовых смесей методом глубокого охлаждения. /И. И. Гельперин. - 2-е изд., перераб. - М. Государственное научно-техническое издательство химической литературы, 1963. - 512 с., ил. стр.232. 6. Термодинамические и теплофизические свойства продуктов сгорания /в 3-х томах/ под ред. В.П. Глушко, - М. Всезоюзный институт научной и технической информации. 1968, т. 2, стр.177-308.

Формула изобретения

Топливо для жидкостных ракетных двигателей, содержащее горючее на основе метана и окислитель, отличающееся тем, что в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%.

Похожие патенты:

Изобретение относится к способу работы двигателя летательного аппарата, действующего по принципу реактивного движения

Изобретение относится к ракетно-космической технике и касается конструкции жидкостных ракетных двигателей (ЖРД), работающих на криогенном топливе, в частности двигателей ракетных блоков и космических аппаратов, использующих в качестве компонентов топлива криогенный окислитель жидкий кислород и углеводородное горючее

В общем случае нагрев рабочего тела присутствует как составляющая рабочего процесса теплового ракетного двигателя. Причем наличие источника теплоты - нагревателя формально обязательно (в частном случае его тепловая мощность может равняться нулю). Тип его можно характеризовать видом энергии, переходящей в теплоту. Таким образом получаем признак классификации, по которому тепловые ракетные двигатели по виду энергии, преобразуемой в тепловую энергию рабочего тела, делятся на электрические, ядерные (рис.10.1.) и химические (рис 13.1, уровень 2).

Схема, конструкция и достижимые параметры ракетного двигателя на химическом топливе во многом определяются агрегатным состоянием ракетного топлива. Ракетные двигатели на химическом топливе (в зарубежной литературе иногда называемые химическими ракетными двигателями) по этому признаку делятся на:

жидкостные ракетные двигатели - ЖРД, компоненты топлива которых в состоянии хранения на борту - жидкость (рис. 13.1, уровень 3; фото, фото),

ракетные двигатели твердого топлива - РДТТ (рис. 1.7, 9.4, фото, фото),

гибридные ракетные двигатели - ГРД, компоненты топлива которых находятся на борту в разных агрегатных состояниях (рис. 11.2).

Очевидным признаком классификации двигателей на химическом топливе является число компонентов ракетного топлива.

Например, ЖРД на однокомпонентном или на двухкомпонентном топливе, ГРД на трехкомпонентном топливе (по зарубежной терминологии - на трибридном топливе) (рис. 13.1, уровень 4).

По конструктивным признакам возможна классификация ракетных двигателей с выделением десятков рубрик, но основные отличия в выполнении целевой функции определяются схемой подачи компонентов в камеру сгорания. Наиболее характерна классификация по этому признаку ЖРД.

Классификация ракетных топлив.

РТ подразделяются на твердые и жидкие. Твердые ракетные топлива имеют ряд преимуществ перед жидкими, они длительно хранятся, не воздействуют на оболочку ракеты, не представляют опасности для работающего с ним персонала в связи с низкой токсичности.

Однако взрывной характер их горения создает трудности в их применении.

К твердым ракетным топливам относятся баллистные и кордитные пороха на основе нитроцеллюлозы.

Жидкостный реактивный двигатель, идея создания которого принадлежит К.Э.Циолковскому, наиболее распространен в космонавтике.

Жидкие РТ могут быть однокомпонентными и двухкомпонентными (окислитель и горючие).

К окислителям относятся: азотная кислота и окислы азота (двуокись, четырехокись), перекись водорода, жидкий кислород, фтор и его соединения.

В качестве горючего используется керосины, жидкий водород, гидразины. Наиболее широко используется гидразин и несимметричный диметилгидразин (НДМГ).

Вещества, входящие в состав жидких РТ обладают высокой агрессивностью и токсичностью к человеку. Поэтому перед медицинской службой стоит проблема проведения профилактических мероприятий по защите личного состава от острых и хронических отравлений КРТ, организации оказания неотложной помощи при поражениях.

В связи с этим и изучаются патогенез, клиника поражений, разрабатываются средства оказания неотложной помощи и лечения пораженных, создаются средства защиты кожи и органов дыхания, устанавливаются ПДК различных КРТ и необходимые гигиенические нормы.

Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.

К преимуществам ЖРД можно отнести следующие:

Самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4 500 м/с для пары кислород-водород, для керосин-кислород - 3 500 м/с).

Управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском. Это необходимо при маневрировании аппарата в космическом пространстве.

При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса. Чем больше объём топлива на ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.

Недостатки ЖРД:

ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твёрдотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого). Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоемка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твёрдотопливным двигателям, ввиду их более высокой надёжности, мобильности и боеготовности.

Компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков. Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.

В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).

Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер, Галилео).

омпоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты (см. Формула Циолковского), которые при недостаточно высоком значении удельного импульса могут оказаться нереальными. В таблице 1 приведены основные характеристики некоторых сочетаний компонентов жидкого топлива.

Помимо удельного импульса при выборе компонентов топлива, решающую роль могут сыграть и другие показатели свойств топлива, в том числе:

Плотность, влияющая на размеры баков компонентов. Как следует из табл. 1, водород является горючим, с самым большим удельным импульсом (при любом окислителе), однако он обладает крайне низкой плотностью. Поэтому первые (самые большие) ступени ракет-носителей обычно используют другие (менее эффективные, но более плотные) виды горючего, например, керосин, что позволяет уменьшить размеры первой ступени до приемлемых. Примерами такой «тактики» служат ракета Сатурн-5, первая ступень которой использует компоненты кислород/керосин, а 2-я и 3-я ступени - кислород/водород, и система Спейс Шаттл, в которой в качестве первой ступени использованы твёрдотопливные ускорители.

Температура кипения, которая может накладывать серьёзные ограничения на условия эксплуатации ракеты. По этому показателю компоненты жидкого топлива подразделяют на криогенные - охлаждённые до крайне низких температур сжиженные газы, и высококипящие - жидкости имеющие температуру кипения выше 0 °C.

Криогенные компоненты не могут долго храниться, и транспортироваться на большие расстояния, поэтому они должны изготовляться (по крайней мере сжижаться) на специальных энергоёмких производствах, находящихся в непосредственной близости от места старта, что делает пусковую установку совершенно немобильной. Помимо этого, криогенные компоненты обладают и другими физическими свойствами, предъявляющими дополнительные требования к их использованию. Например, наличие даже незначительного количества воды или водяного пара в ёмкостях со сжиженными газами приводит к образованию очень твёрдых кристаллов льда, которые при попадании в топливную систему ракеты воздействуют на её части как абразивный материал и могут стать причиной тяжёлой аварии. За время многочасовой подготовки ракеты к старту на ней намерзает большое количество инея, превращающегося в лёд, и падение его кусков с большой высоты представляет опасность для персонала, занятого в подготовке, а также для самой ракеты и стартового оборудования. Сжиженные газы после заправки ими ракеты начинают испаряться, и до момента старта их нужно непрерывно пополнять через специальную систему подпитки. Избыток газа, образующегося при испарении компонентов, необходимо отводить таким образом, чтобы окислитель не смешивался с горючим, образуя взрывчатую смесь.

Высококипящие компоненты гораздо более удобны при транспортировке, хранении и оперировании с ними, поэтому в 50е годы ХХ в они вытеснили криогенные компоненты из области военного ракетостроения. В дальнейшем эта область всё в большей степени стала заниматься твёрдым топливом. Но при создании космических носителей криогенные топлива пока сохраняют своё положение за счёт высокой энергетической эффективности, а для выполнения маневров в космическом пространстве, когда топливо должно сохраняться в баках месяцами, а то и годами, наиболее приемлемыми являются высококипящие компоненты. Иллюстрацией такого «разделения труда» могут служить ЖРД, задействованные в проекте Аполлон: все три ступени ракеты-носителя Сатурн-5 используют криогенные компоненты, а двигатели лунного корабля, предназначенные для коррекции траектории и для маневров на окололунной орбите, - высококипящие несимметричный диметилгидразин и тетраоксид диазота.

Химическая агрессивность. Этим качеством обладают все окислители. Поэтому наличие в баках, предназначенных для окислителя, даже незначительных количеств органических веществ (например, жировых пятен, оставленных человеческими пальцами) может вызвать возгорание, вследствие которого может загореться материал самого бака (алюминий, магний, титан и железо очень энергично горят в среде ракетного окислителя). Из-за агрессивности окислители, как правило, не используются в качестве теплоносителей в системах охлаждения ЖРД, а в газогенераторах ТНА, для снижения тепловой нагрузки на турбину рабочее тело перенасыщается горючим, а не окислителем. При низких температурах жидкий кислород является, пожалуй, самым безопасным окислителем, потому, что альтернативные окислители, такие как тетраоксид диазота или концентрированная азотная кислота вступают в реакцию с металлами, и хотя они являются высококипящими окислителями, которые могут подолгу храниться при нормальной температуре, время службы баков, в которых они находятся, ограничено.

Токсичность компонентов топлива и продуктов их горения является серьёзным ограничителем их использования. Например, фтор, как следует из табл.1., как окислитель, более эффективен, чем кислород, однако в паре с водородом он образует фтороводород - вещество крайне токсичное и агрессивное, и выброс нескольких сотен, тем более, тысяч тонн такого продукта сгорания в атмосферу при запуске большой ракеты, сам по себе является крупной техногенной катастрофой, даже при удачном запуске. А в случае аварии, и разлива такого количества этого вещества, ущерб не поддаётся учёту. Поэтому фтор не используется в качестве компонента топлива. Токсичными являются и тетраоксид азота, азотная кислота и несимметричный диметилгидразин. В настоящее время предпочитаемым (с экологической точки зрения) окислителем является кислород, а горючим - водород, за которым следует керосин.

В общем случае нагрев рабочего тела присутствует как составляющая рабочего процесса теплового ракетного двигателя. Причем наличие источника теплоты - нагревателя формально обязательно (в частном случае его тепловая мощность может равняться нулю). Тип его можно характеризовать видом энергии, переходящей в теплоту. Таким образом получаем признак классификации, по которому тепловые ракетные двигатели по виду энергии, преобразуемой в тепловую энергию рабочего тела, делятся на электрические, ядерные (рис.10.1.) и химические (рис 13.1, уровень 2).

Схема, конструкция и достижимые параметры ракетного двигателя на химическом топливе во многом определяются агрегатным состоянием ракетного топлива. Ракетные двигатели на химическом топливе (в зарубежной литературе иногда называемые химическими ракетными двигателями) по этому признаку делятся на:

жидкостные ракетные двигатели - ЖРД, компоненты топлива которых в состоянии хранения на борту - жидкость (рис. 13.1, уровень 3; фото, фото),

ракетные двигатели твердого топлива - РДТТ (рис. 1.7, 9.4, фото, фото),

гибридные ракетные двигатели - ГРД, компоненты топлива которых находятся на борту в разных агрегатных состояниях (рис. 11.2).

Очевидным признаком классификации двигателей на химическом топливе является число компонентов ракетного топлива.

Например, ЖРД на однокомпонентном или на двухкомпонентном топливе, ГРД на трехкомпонентном топливе (по зарубежной терминологии - на трибридном топливе) (рис. 13.1, уровень 4).

По конструктивным признакам возможна классификация ракетных двигателей с выделением десятков рубрик, но основные отличия в выполнении целевой функции определяются схемой подачи компонентов в камеру сгорания. Наиболее характерна классификация по этому признаку ЖРД.

Классификация ракетных топлив.

РТ подразделяются на твердые и жидкие. Твердые ракетные топлива имеют ряд преимуществ перед жидкими, они длительно хранятся, не воздействуют на оболочку ракеты, не представляют опасности для работающего с ним персонала в связи с низкой токсичности.

Однако взрывной характер их горения создает трудности в их применении.

К твердым ракетным топливам относятся баллистные и кордитные пороха на основе нитроцеллюлозы.

Жидкостный реактивный двигатель, идея создания которого принадлежит К.Э.Циолковскому, наиболее распространен в космонавтике.

Жидкие РТ могут быть однокомпонентными и двухкомпонентными (окислитель и горючие).

К окислителям относятся: азотная кислота и окислы азота (двуокись, четырехокись), перекись водорода, жидкий кислород, фтор и его соединения.

В качестве горючего используется керосины, жидкий водород, гидразины. Наиболее широко используется гидразин и несимметричный диметилгидразин (НДМГ).

Вещества, входящие в состав жидких РТ обладают высокой агрессивностью и токсичностью к человеку. Поэтому перед медицинской службой стоит проблема проведения профилактических мероприятий по защите личного состава от острых и хронических отравлений КРТ, организации оказания неотложной помощи при поражениях.

В связи с этим и изучаются патогенез, клиника поражений, разрабатываются средства оказания неотложной помощи и лечения пораженных, создаются средства защиты кожи и органов дыхания, устанавливаются ПДК различных КРТ и необходимые гигиенические нормы.

Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.

К преимуществам ЖРД можно отнести следующие:

Самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4 500 м/с для пары кислород-водород, для керосин-кислород - 3 500 м/с).

Управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском. Это необходимо при маневрировании аппарата в космическом пространстве.

При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса. Чем больше объём топлива на ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.

Недостатки ЖРД:

ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твёрдотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого). Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоемка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твёрдотопливным двигателям, ввиду их более высокой надёжности, мобильности и боеготовности.

Компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков. Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.

В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).

Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер, Галилео).

омпоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты (см. Формула Циолковского), которые при недостаточно высоком значении удельного импульса могут оказаться нереальными. В таблице 1 приведены основные характеристики некоторых сочетаний компонентов жидкого топлива.

Помимо удельного импульса при выборе компонентов топлива, решающую роль могут сыграть и другие показатели свойств топлива, в том числе:

Плотность, влияющая на размеры баков компонентов. Как следует из табл. 1, водород является горючим, с самым большим удельным импульсом (при любом окислителе), однако он обладает крайне низкой плотностью. Поэтому первые (самые большие) ступени ракет-носителей обычно используют другие (менее эффективные, но более плотные) виды горючего, например, керосин, что позволяет уменьшить размеры первой ступени до приемлемых. Примерами такой «тактики» служат ракета Сатурн-5, первая ступень которой использует компоненты кислород/керосин, а 2-я и 3-я ступени - кислород/водород, и система Спейс Шаттл, в которой в качестве первой ступени использованы твёрдотопливные ускорители.

Температура кипения, которая может накладывать серьёзные ограничения на условия эксплуатации ракеты. По этому показателю компоненты жидкого топлива подразделяют на криогенные - охлаждённые до крайне низких температур сжиженные газы, и высококипящие - жидкости имеющие температуру кипения выше 0 °C.

Криогенные компоненты не могут долго храниться, и транспортироваться на большие расстояния, поэтому они должны изготовляться (по крайней мере сжижаться) на специальных энергоёмких производствах, находящихся в непосредственной близости от места старта, что делает пусковую установку совершенно немобильной. Помимо этого, криогенные компоненты обладают и другими физическими свойствами, предъявляющими дополнительные требования к их использованию. Например, наличие даже незначительного количества воды или водяного пара в ёмкостях со сжиженными газами приводит к образованию очень твёрдых кристаллов льда, которые при попадании в топливную систему ракеты воздействуют на её части как абразивный материал и могут стать причиной тяжёлой аварии. За время многочасовой подготовки ракеты к старту на ней намерзает большое количество инея, превращающегося в лёд, и падение его кусков с большой высоты представляет опасность для персонала, занятого в подготовке, а также для самой ракеты и стартового оборудования. Сжиженные газы после заправки ими ракеты начинают испаряться, и до момента старта их нужно непрерывно пополнять через специальную систему подпитки. Избыток газа, образующегося при испарении компонентов, необходимо отводить таким образом, чтобы окислитель не смешивался с горючим, образуя взрывчатую смесь.

Высококипящие компоненты гораздо более удобны при транспортировке, хранении и оперировании с ними, поэтому в 50е годы ХХ в они вытеснили криогенные компоненты из области военного ракетостроения. В дальнейшем эта область всё в большей степени стала заниматься твёрдым топливом. Но при создании космических носителей криогенные топлива пока сохраняют своё положение за счёт высокой энергетической эффективности, а для выполнения маневров в космическом пространстве, когда топливо должно сохраняться в баках месяцами, а то и годами, наиболее приемлемыми являются высококипящие компоненты. Иллюстрацией такого «разделения труда» могут служить ЖРД, задействованные в проекте Аполлон: все три ступени ракеты-носителя Сатурн-5 используют криогенные компоненты, а двигатели лунного корабля, предназначенные для коррекции траектории и для маневров на окололунной орбите, - высококипящие несимметричный диметилгидразин и тетраоксид диазота.

Химическая агрессивность. Этим качеством обладают все окислители. Поэтому наличие в баках, предназначенных для окислителя, даже незначительных количеств органических веществ (например, жировых пятен, оставленных человеческими пальцами) может вызвать возгорание, вследствие которого может загореться материал самого бака (алюминий, магний, титан и железо очень энергично горят в среде ракетного окислителя). Из-за агрессивности окислители, как правило, не используются в качестве теплоносителей в системах охлаждения ЖРД, а в газогенераторах ТНА, для снижения тепловой нагрузки на турбину рабочее тело перенасыщается горючим, а не окислителем. При низких температурах жидкий кислород является, пожалуй, самым безопасным окислителем, потому, что альтернативные окислители, такие как тетраоксид диазота или концентрированная азотная кислота вступают в реакцию с металлами, и хотя они являются высококипящими окислителями, которые могут подолгу храниться при нормальной температуре, время службы баков, в которых они находятся, ограничено.

Токсичность компонентов топлива и продуктов их горения является серьёзным ограничителем их использования. Например, фтор, как следует из табл.1., как окислитель, более эффективен, чем кислород, однако в паре с водородом он образует фтороводород - вещество крайне токсичное и агрессивное, и выброс нескольких сотен, тем более, тысяч тонн такого продукта сгорания в атмосферу при запуске большой ракеты, сам по себе является крупной техногенной катастрофой, даже при удачном запуске. А в случае аварии, и разлива такого количества этого вещества, ущерб не поддаётся учёту. Поэтому фтор не используется в качестве компонента топлива. Токсичными являются и тетраоксид азота, азотная кислота и несимметричный диметилгидразин. В настоящее время предпочитаемым (с экологической точки зрения) окислителем является кислород, а горючим - водород, за которым следует керосин.

Твердое ракетное топливо представляет собой твёрдое вещество (смесь веществ), которое способно гореть без воздуха и при этом выделять много газообразных соединений, разогретых до высокой температуры. Такие составы используют для создания в двигателях ракет.

Ракетное топливо используется как источник энергии для Кроме твердого горючего, существуют ещё гелеобразные, жидкие и гибридные аналоги. У каждой разновидности горючего имеются свои преимущества и недостатки. Жидкие топлива бывают однокомпонентными и двухкомпонентными (горючее + окислитель). Гелеобразные топлива представляют собой составы, загущенные до состояния геля с помощью Гибридные топлива - это системы, которые включают в себя твердое горючее и жидкий окислитель.

Первые разновидности ракетного горючего были именно твердыми. В качестве рабочего вещества применялся порох и его аналоги, которые использовались в военном деле и для создания фейерверков. Сейчас эти соединения применяются лишь для изготовления небольших модельных ракет, как ракетное топливо. Состав позволяет запускать небольшие (до 0,5 м) ракеты на несколько сотен метров в высоту. Двигателем в них выступает маленький цилиндр. Он начинен твердой горючей смесью, которая поджигается раскаленной проволокой и горит всего несколько секунд.

Ракетное топливо твердого типа чаще всего состоит из окислителя, горючего и катализатора, позволяющего поддерживать стойкое горение после воспламенения состава. В исходном состоянии данные материалы порошкообразные. Чтобы сделать из них ракетное топливо, необходимо создать плотную и которая будет гореть долго, ровно и непрерывно. В твердотопливных двигателях ракет используются: в качестве окислителя, (углерод), как горючее, и сера, как катализатор. Это состав черного пороха. Второй комбинацией материалов, которые применяются, как ракетное топливо являются: бертолетова соль, алюминиевая или магниевая пудра и хлорат натрия. Данный состав называют ещё белым порохом. Твердые горючие наполнители для военных ракет подразделяются на баллиститные (нитроглицериновые спрессованные пороха) и смесевые, которые применяют в форме канальных шашек.

Твердотопливный ракетный двигатель работает следующим образом. После воспламенения топливо начинает гореть с заданной скоростью, выбрасывая через сопло горячее газообразное вещество, что обеспечивает тягу. Горючее в двигателе горит, пока не кончится. Поэтому остановить процесс и выключить двигатель невозможно, пока наполнитель не сгорит до конца. Это один из серьезных минусов твердотопливных двигателей, по сравнению с другими аналогами. Однако в настоящих космических баллистических носителях твердотопливные материалы применяются только на начальном этапе полета. На следующих этапах используются другие типы ракетного горючего, поэтому недостатки твердотопливных составов существенной проблемы не представляют.

Loading...Loading...