телевизоры. Советы пользователю. телевизоры Что значит 3д

Что такое 3D?

3D (читается как три дэ) – это собирательный образ, который включает в себя множество понятий. Чаще всего под ним подразумевают технологию по созданию и отображению объемного изображения.

Обычно на мониторе или телевизоре человек видит плоскую картинку, т.к. сам экран плоский и имеет всего два измерения – ширину и высоту. В окружающем нас мире присутствует еще и третье измерение – глубина. Человек легко отличает плоскую картинку от действительности.

Поэтому инженеры ищут различные способы создания искусственного изображения, которое имело бы 3 измерения, и было бы максимально приближено к реальности.

Такое изображение стали называть 3D-изображением . Название произошло, если не ошибаюсь, от словосочетания на английском языке «third dimension» - третье измерение – 3D.

В упрощенном виде зрение человека можно представить следующим образом.

Каждый глаз получает свое изображение, причем эти изображения разные, а мозг уже «собирает» из этих двух изображений объемную картинку. Благодаря этому мы можем воспринимать все три измерения. Картинку с экрана оба глаза видят одинаково, поэтому мы понимаем, что это плоское изображение.

В связи с таким устройством нашего зрения основным подходом для создания трехмерных изображений, приближенных к реальным, стал метод создания разных изображений для каждого глаза.

Одним из примеров могут служить стереокартинки или стереограммы .

При обычном взгляде на них видно всего лишь размытое неопределенное цветное пятно. Однако, при расфокусировании зрения, когда глаза будут получать разное изображение, мозг «сложит» эти изображения и вы «увидите» 3D картинку.

Вот пример таких картинок и несколько способов, как научится расфокусировать глаза http://illuziya.com/index.php/site/comments/n_539/ .

Я сам мог смотреть такие картинки, когда учился в школе, теперь уже не могу, не получается правильно расфокусировать глаза.

Как вы видите, такой способ имеет существенные недостатки: не все люди могут научиться видеть такие картинки, для меняющейся картинки (игры или фильма) такой способ не подойдет.

Следующий способ – это создание картинок отдельно для левого и правого глаза и затем показ их соответственно для левого и правого глаза. Этот способ используют в основном в кинотеатрах.

Создание отдельных картинок делается относительно просто – с развитием цифровых технологий фильм сразу снимают на две рядом стоящие камеры или специальным способом разделяют обычный кадр на 2 – для каждого глаза. В самом кинотеатре зритель должен одеть специальные очки, которые позволяют каждому глазу видеть только «свое» изображение. В результате зритель видит объемное изображение.

Такие специальные очки бывают нескольких типов. Один из них – это поляризационные очки .

Поляризация света – это специальное преобразование обычного света. Поляризация используется в науке и технике, но иногда находит применение и в обычной жизни.

При использовании поляризации свет от кинопроектора изменятся таким образом, чтобы лучи, направленные на экран, например, через левый объектив, воспринимались только левым глазом и полностью гасились для правого глаза, а для правого объектива - наоборот. Для таких очков надо создавать два отдельных изображения.

Такие очки используют, например, в кинотеатрах IMAX 3D . Для этого способа нужно дорогостоящее оборудование, но для зрителя такая картинка лучше всех других способов и дополнительная нагрузка на глаза (по сравнению с обычным кинотеатром) минимальна.

Другой тип очков – это анаглиф .

Это такие очки, у которых стекла разного цвета, обычно левое красного, а правое синего цвета. Могут быть и другие цвета.

Вот пример таких очков:

Для таких очков используют одно модифицированное изображение.

Общий смысл модификации такой – к основному изображению создаются 2 дополнительных, которые окрашиваются в красный и синий оттенки, и которые смещаются влево и вправо от основного на некоторое расстояние. Потом основное и дополнительные изображения совмещают особым образом.

Также можно создавать картинку–анаглиф из двух картинок. Например, для фото, снятых из двух рядом стоящих точек. В интернете по запросу «как сделать анаглиф» выдается много ссылок на описание метода и на программы по работе с фото.

Вот пример картинки-анаглифа:

Такой способ можно использовать в обычных кинотеатрах. Этот вариант гораздо дешевле по сравнению с поляризационными очками.

Существенный недостаток анаглифных очков – это уменьшение яркости изображения, что создает дополнительную нагрузку на глаза, чтобы рассмотреть изображение. Поэтому этот способ для темных изображений малопригоден.

3D мониторы и телевизоры.

3D мониторы работают с очками. Используются очки со стереоскопическим затвором. А монитор должен иметь частоту обновления (вертикальной развертки или вертикальной синхронизации) не менее 120Гц.

Принцип работы 3D режима такой: разное изображение для левого и правого глаза показывается по очереди. Каждое изображение монитор показывает 60 раз в секунду, чтобы не ухудшилось качество.

Таким образом, нужна минимальная частота 120Гц. А очки связаны с монитором и тоже по очереди пропускают изображение для левого и правого глаза. 3D телевизоры в комплекте с очками работают аналогично.

3D телевизоры без очков содержат дополнительной слой в экране, который при активации и создает 3D картинку. Недостаток в том, что эта картинка видна из одной небольшой области пространства перед телевизором. Большой компанией 3D уже не посмотришь.

Фирма Nvidia даже выпустила специальный набор, который подключается к ПК. Этот набор включает в себя очки с активным затвором и специальный хаб. Все это подключается к ПК с мощной видеокартой Nvidia и монитором 120Гц.

В результате нам обещают 3D, такое как в кинотеатре. Вот описание этого продукта: http://www.nvidia.ru/object/3d-vision-main-ru.htm

В настоящее время ученые работают над созданием системы, которая позволит создать полностью трехмерное изображение в пространстве, и уже есть первые результаты: http://www.3dnews.ru/news/619900

3D на ПК.

В настоящее время существует множество игр, в которых создана трехмерная реальность. В основном это «стрелялки», т.е. игры, где надо много бегать и стрелять с видом «как бы из глаз» героя. Но все равно такая картинка не воспринимается, как настоящая трехмерная.

Постепенно программисты придумали, как «добавить» 3D в игры. Первый раз я увидел такую возможность в игре «King"s Bounty: Принцесса в доспехах» (сайт игры http://princess.kingsbounty.ru/).

Там реализован наверное самый простой вариант – с использованием анаглифных очков. Игру я приобрел сразу в комплекте с очками. В самой игре есть опция включения 3D режима. После включения этой опции можно одеть очки и увидеть объемное изображение.

На сайте ag.ru есть раздел со стереоскриншотами из этой игры. Просматривать их надо в анаглифных стереочках, красно-синих. Вот ссылка.

За счет того, что сама игра яркая и светлая (там даже в подземельях не страшно), переключение в 3D режим не ухудшает изображение.

Через некоторое время я узнал про программу «iz3D driver» . Сайт разработчика: http://www.iz3d.com/ .

Эта программа устанавливается дополнительно в операционную систему и позволяет настроить работу видеодрайвера в один из режимов 3D, в зависимости от вашего монитора или телевизора.

В настройках есть и самый простой режим – анаглиф. Для переключения в этот режим и его настройки есть несколько комбинаций клавиш. При использовании этого режима частота кадров (FPS – frame per second) падает примерно вдвое.

Пример настройки ПК для получения 3D изображения.

Относительно недавно фирма Nvidia реализовала функцию поддержки 3D в своих драйверах, аналогичную работе ПО от iz3d.

Сейчас я расскажу, как это можно использовать. Этот способ подходит только для ПК с видеокартой фирмы Nvidia. Для его использования нужны анаглифные красно-синие очки.

Шаг 1. Скачиваем (по ссылке: http://www.nvidia.ru/Download/index.aspx?lang=ru) и устанавливаем последние версии драйверов и дополнительного ПО для вашей модели видеокарты.

Шаг 2. Вызываем панель управления Nvidia через контекстное меню или панель управления.

Шаг 3. В левой части выбираем раздел «Стереоскопический режим 3D» , а в нем пункт .

Справа должно появиться такое содержимое:

В этом разделе настроек можно нажать кнопку «Запуск мастера установки» или установить галочку .

Шаг 4. После этого появится новое окно, к котором надо настроить режим 3D.

Окно 1 – «Установка Nvidia 3D Vision».


Здесь выбирается тип реализации 3D. Наш вариант самый нижний, там как раз нарисованы красно-синие очки – «Очки 3D vision discover» .

Окно 2 – «Протестируйте настройки оборудования».

Здесь надо одеть очки и правильно указать видимые объекты.

Не знаю почему, но даже в очках, закрывая глаза по очереди, в нижнем ряду я вижу все объекты.

Методом проб и ошибок я определил, что правильный вариант такой – для левого глаза надо выбирать шестиугольник, а для правого – треугольник.

Окно 3 – «Проверка настроек».

В очках надо смотреть на большой квадрат в пункте 1 . Внутри него должен быть виден «выпуклый» квадрат поменьше.

Соответственно, после проверки в пункте 2 надо указать левый квадрат.

Окно 4 – «Поздравление с завершением настроек».

Можно поставить или снять галочки для создания ярлыка для просмотра фото, и для просмотра слайд-шоу. Жмем «Готово».

Вот пример изображения из этого слайд-шоу:

Выйти из слайд-шоу можно по «Esc» .

После этого в панели управления появится такое содержимое:

Ползунок – настраивает глубину 3D.

Кнопка «Изменить 3D лазерный прицел» - вызывает окно настроек прицела. Этот прицел нужен для игр-стрелялок.


В результате преобразования изображения «родной» прицел в игре скорее всего не будет виден. И чтобы вернуть прицел обратно используется вот этот лазерный прицел. Эффект от использования лучше всего проверять в конкретной игре.

Кнопка «назначить сочетание клавиш» вызывает окно с настройками сочетаний клавиш для дополнительных настроек 3D прямо в игре. Эффект от изменения будет виден сразу в игре.

По нижней кнопке можно еще раз запустить мастера установки 3D или проверить существующие настройки 3D.

В панели управления на закладке можно проверить, насколько игра поддерживает режим 3D.

Например, известная игра «World of Tanks» имеет хорошую совместимость. В списке проблем указано, правда на английском, что некоторые объекты будут отрисованы неправильно.

Я запустил игру и увидел, что маркеры танков отображаются не над танками, а в произвольных местах игровой сцены. Больше проблем с изображением не обнаружил.

Также при запуске игры сразу включается режим 3D и в правом нижнем углу появляется информация об игре:

Вот изображение танка в самой игре при включенном режиме 3D:

Для выключения режима 3D целиком надо в панели управления Nvidia снять галочку с пункта «Включить стереоскопический режим 3D» и нажать кнопку «применить» .

Заключение.

Вот таким образом можно получить 3D изображение дома уже сейчас. Если у вас установлена в ПК видеокарта Nvidia , то режим 3D можно включить прямо в настройках драйвера.

Список игр, которые поддерживаются самим драйвером, постоянно пополняется, все самые популярные игры в него включены.

Если видеокарта другого производителя – тогда надо изучать настройки драйвера или использовать дополнительное ПО, например iz3d.

Обычно при включении такого режима количество кадров в секунду падает примерно вдвое, поэтому нужна хорошая видеокарта для комфортной игры в таком режиме.

Мне этот вариант понравился своей относительной простотой реализации. Но на самом деле после 2-3 дней игры по 15-20 минут интерес пропал, и я перестал пользоваться этим режимом. Да и глаза уставали сильно.

Ниже приведено еще несколько ссылок на интересные материалы про 3D.

Максим Тельпари - Специалист службы поддержки видеокурса "Уверенный пользователь ПК 2.0" , изучив который, вы сможете самостоятельно настраивать BIOS, устанавливать и настраивать Windows 7, восстанавливать систему, решать проблемы при работе с ПК и многое другое.

Заработайте на этой статье!
Зарегистрируйтесь в партнерской программе. Замените в статье ссылку на курс на свою партнерскую ссылку. Добавьте статью на свой сайт. Получить версию для перепечатки можно .

3D телевизоры предлагают чувство глубины, которое стандартные 2D телевизоры демонстрировать не могут. Правда для этого вам понадобятся специальные очки.

Если вы получили удовольствие от просмотра таких фильмов, как Аватар или Хоббит в 3D кинотеатре или IMAX, то вы вполне можете получить схожие впечатления, сидя у себя дома с 3D телевизором.

Все лучшие бренды телевизионной техники, включая Samsung, LG, Philips, Sony предлагают 3D модели. Но держите в голове, что, как и в кинотеатре, вам не обойтись без специальных очков для просмотра, и ощущения от просмотра могут сильно отличаться.

Как работает 3D телевизор?

Телевизоры поляризуют изначальные 3D картинки в отдельные изображения. Если смотреть своими глазами, картинка покажется расплывчатой, но стоит только одеть 3D очки, отдельные изображения направляются либо в левый, либо в правый глаз, создавая впечатление глубины.

Имейте в виду, что такого понятия как эксклюзивный 3D телевизор не существует, вместо этого есть телевизоры, оснащенные функцией 3D. Вы можете использовать их также для просмотра обычного 2D телевизионного сигнала, но помимо этого вам будут доступны 3D видео через Blu-ray проигрыватели и через некоторые Smart TV сервисы.

3D телевизоры: что вам нужно о них знать

    Размер экрана: вы можете найти 3D функцию на различных телевизорах разного ценового диапазона, но для того, чтобы поистине насладиться этим изображением, вам нужен большой экран, в данном случае чем больше, тем лучше. 3D не всегда работает хорошо на маленьких телевизорах, поэтому минимальный размер, который мы рекомендуем, это 32 дюйма.

    Расстояние для просмотра: лучшее изображение 3D открывается с оптимальной дистанции. Измерьте четыре расстояния высоты вашего телевизора и проверьте, что вы сидите на этом расстоянии до вашего телевизора. Если вы смотрите телевизор под углом 45 градусов, то 3D эффект скорее всего будет плохо заметен, и другие проблемы с качеством изображения также возможны (смотрите ниже раздел «на что похоже 3D изображение»).

    Очки: вам нужно надеть очки, чтобы смотреть 3D, так что убедитесь, что вам в них максимально комфортно. Не всегда 3D телевизоры продаются с подходящими очками в комплекте, в других случаях в комплекте может идти меньше очков, чем нужно для вашей семьи, проверьте наличие и количество очков до покупки. Если вы носите свои очки, то можете чувствовать дискомфорт, надевая 3D очки поверх своих. Вы можете отдельно приобрести накладные 3D линзы для своих привычных очков.

Активная 3D или пассивная 3D: что купить мне?

Существуют две основные 3D технологии – активная и пассивная – и каждая имеет свои за и против. Крупные производители телевизоров применяют обе эти технологии, хотя LG преимущественно сфокусировался на пассивной 3D, а Panasonic, Samsung и Sony, наоборот, на активной.

Пассивная 3D технология: если вы были в кинотеатре на просмотре 3D фильма, вы уже знакомы с пассивной 3D технологией. Одевая похожие на солнцезащитные очки, каждый глаз видит различный поляризованный свет. Далее ваш мозг сопоставляет оба эти изображения, и формируется 3D картинка. Пассивные очки дешевые в производстве, и несколько пар уже как правило идет в комплекте с телевизором, но пассивное 3D изображение не такое детальное, как активное 3D.

Активная 3D технология: телевизоры с активной 3D технологией обладают более высоким разрешением 3D изображений. Очки синхронизируются с телевизором через инфракрасный или Bluetooth сигнал и часто переключаются туда-сюда, направляя изображения то в правый, то в левый глаз зрителя. Эти очки более тяжелые и громоздкие по сравнению с пассивными 3D очками, к тому же они более дорогие; если вам придется менять их, стоимость составит от 1 500 до 6 000 рублей.

3D контент: Что можно посмотреть в 3D?

От роста популярности 3D технологию сдерживает отсутствие большого выбора 3D контента, в частности, бесплатных 3D программ на телевидении.

Некоторые провайдеры спутникового телевидения предлагают выбор 3D фильмов и передач, но это платная услуга. Некоторые телевизоры способны преобразовывать 2D контент в 3D, но, по нашему мнению, эффект такого изображения не вполне соответствует ожиданиям пользователей. Вы также можете купить или взять на прокат Blu-ray диск с 3D фильмом, если у вас имеется совместимый Blu-ray проигрыватель, но имейте в виду, что диски и проигрыватели с 3D стоят немного дороже, чем обычные не-3D аналоги.

Пользователи, которые только начинают свое знакомство с компьютером, нередко задаются вопросом о том, что такое и как реализовывается система 3D.

Это распространенная аббревиатура, которую в настоящее время можно встретить практически где угодно – от описаний гаджетов, и игр до процедур, предлагаемых в салонах красоты.

В данной статье рассказано, что имеется в виду под таким обозначение.

Определение

Как же расшифровывается 3D, что означает данное сокращение? D в данном контексте – это первая буква слова dimensions, которое означает «измерения».

Таким образом, аббревиатура 3D обозначает три измерения, именно этим сочетание может заменяться выражение трехмерная графика, а также объемное изображение.

Изначально данная аббревиатура стала употребляться именно относительно графики.

Такой способ изображения, по мере развития компьютерных технологий, пришел на смену привычному двухмерному построению картинки.

Особенно часто выражение «объемная графика» применяется к компьютерным играм, которые создают для пользователя, в большей или меньшей степени, эффект присутствия, позволяют реалистично обходить объекты, осматривать их с разных сторон.

Также данное выражение имеет широкое распространение, когда речь идет о фильмах и телевизорах. Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе 3D, с эффектом присутствия, некоторые телевизоры оснащены такой функцией. Здесь имеет место несколько иная технология, чем в компьютерной графике – обе эти технологии будут подробно рассмотрены ниже.

Другие сферы применения

Такое определение используется не только в графике, оно также применимо и ко звуку, некоторым изделиям и т. п. Например:

По сути, такое обозначение может применяться практически ко всему, что традиционно является плоским – двухмерным, но с появлением новой технологии может выполняться, как трехмерное.

В любом словосочетании данная аббревиатура означает «объемное».

Фильмы

Раньше увидеть так называемые стереофильмы или можно , да и то не во всех. А кроме того, не со всеми фильмами это было возможно.

Сейчас же эта технология стала настолько распространена, что реализовывается даже в домашних телевизорах, и теперь у зрителя есть возможность смотреть фильмы с объемным изображением в домашних условиях.

Существует две технологии, с помощью которых можно добиться эффекта присутствия. Они имеют различные технические особенности, но дают более или менее схожий результат, то есть, объемную картинку высокого качества. Это технологии активного и пассивного построения изображения, каждая из которых имеет свои преимущества и недостатки.

Активное 3D

Эта технология «присутствия» может реализоваться в , она достаточно сложна и будет работать только с использованием специальных затворных очков.

Реализуется она путем динамичной смены различных картинок.

Когда очки надеты на зрителя, он в один момент может видеть изображение только одним глазом, затем – только вторым (используются специальные затемнители в очках).

Но за счет того, что картинки и затемнители меняются очень быстро, зритель этого мигания не замечает.

Реализация этого достаточно сложная – нужны не только очки, но и телевизор, поддерживающий такую систему построения изображения.

При этом, важно, чтобы очки точно синхронизировались с телевизором (чаще всего – по блютуз), а если этого не происходит, то качество картинки будет очень низким.

Интересной особенностью технологии является то, что мигание и затемнение линз приводит к общему субъективному затемнению картинки в очках, потому изображения в таких фильмах делается немного более ярким.

Его можно, но не слишком приятно смотреть без очков.

Пассивное 3D

Это иная технология, которая допускает использование совсем простых , которые известны всем и имеют синюю и красную линзы.

Именно таким методом реализуется объемное изображение в большинстве кинотеатров, так как такие очки дешевые, их стоимость в случае утери или порчи можно заложить в стоимость билета.

Конечно, для реализации такого эффекта в домашних условиях тоже требуется телевизор, способный работать по данной схеме.

Важно! Отдельно покупать очки, обычно, не требуется. Телевизоры с соответствующей технологией комплектуются сразу несколькими такими очками из-за их низкой стоимости.

Здесь основная нагрузка приходится не на очки, а на телевизор. Его экран , который построчно делит изображение на две части – синюю и красную.

Сняв очки, вы можете заметить, что картинка немного раздваивается, сильнее в центре, менее заметно у вертикальных границ экрана – это результат работы фильтра, о котором идет речь.

Каждый глаз при такой системе видит только ту картинку, которая предназначена ему – только четные или только нечетные строки.

При этом строки, предназначенные для другого глаза, перекрываются фильтром цветной линзы очков. Таким образом строится объемное изображение.

Сравнительная характеристика технологий

В настоящее время производители техники не пришли к однозначному мнению о том, какая из двух технологий оптимальнее и лучше отвечает потребностям потребителя, потому одинаково активно реализуются устройства обоих типов.

Хотя спрос на пассивное объемное изображение выше за счет более дешевой стоимости оборудования при не слишком сниженном качестве изображения.

В таблице ниже приведены преимущества и недостатки обеих технологий для сравнения.

Таблица 1. Сравнительные характеристики технологий активного и пассивного 3D
Активное Пассивное
Очки стоят достаточно дорого, как и телевизор с такой технологией В целом технология получается дешевле, чем при активном построении объемного изображения
Не всегда удобно смотреть телевизор в очках
Может не подходить некоторым людям, страдающим мигренью
Нужно следить за зарядом очков, так как они имеют собственный блок питания Чаще всего очков много в комплекте, они дешевые, выполняют лишь механическую функцию фильтра
Высокое качество изображения Чуть более низкое качество изображения
Полная безопасность для глаз по мнению специалистов, или нагрузка достаточно низкая
Мигание и смена картинки отнимает, пусть и минимально, время – в динамичных сценах это может быть достаточно сильно заметно Высокое качество картинки дают только телевизоры, которые стоят достаточно дорого
Даже несмотря на попытки производителей оптимизировать яркость, фильмы все равно будут немного темнее, чем в оригинале Нельзя смотреть кино на близком расстоянии – минимальное расстояние от экрана до зрителя для построения качественной картинки – 3 м.

Вне зависимости от технологии, важное значение имеет качество цветопередачи – если оно низкое, то оцени качество объемного видео все равно не получится.

Также большое значение, особенно при активном построении картинки имеет частота .

Все эти факторы существенно влияют на цену оборудования, часто настолько, что ценовая граница между устройствами с пассивной и активной технологией почти полностью стирается.

Совет. Нужно учесть, что фильм тоже должен быть обработан для воспроизведения в объемном формате. Хотя количество такого контента постепенно растет, в настоящее время его все еще немного. Особенно такого, который выполнен действительно качественно.

Графика

Объемная графика в играх имеет несколько иное значение. Здесь имеется в виду возможность передвижения в более или менее реалистичной локации.

Существенным отличием является, например, возможность осматривать здания, сооружения и предметы с разных сторон постепенно, тогда как в играх с двухмерной графикой при повороте, например, за здание, одна картинка резко сменялась другой.

Здесь речь не идет об эффекте присутствия – речь только о красивой картинке, создающей ощущения реалистичной игры. Так как это просто картинка, никаких очков здесь не требуется, так как технически такие реализуются иначе. Картинка строится на основании объемных компьютерных моделей всех объектов, которые есть в игре, а также локаций.

При этом,при «движении» игрока по локации, картинки динамично сменяют одна другую, создавая соответствующий эффект.

Важное значение здесь имеет высокая частота обновления экрана – если она будет низкая, картинка будет зависать, изображение «прыгать» и т. п.

По сравнению с традиционными двухмерными играми, трехмерные оказывают достаточно большую нагрузку на аппаратные ресурсы оборудования.

Кроме того, при игре в режиме онлайн очень важна высокая скорость интернета и высокое качество соединения.

Трехмерное изображение в играх гораздо более распространено, чем в фильмах , что связано с тем, что такая технология начала широко внедряться гораздо раньше.

По сути, именно с ее появлением и появилось само понятие трехмерной графики.

Кроме того, такая технология не только проще в технической реализации, но и дешевле, так как не требует дополнительного оборудования.

  • Recovery Mode

Все мы слышали о 3D графике (далее просто 3D, не путать со способом отображения - голограммами, 3D-мониторами и т.п.), многие прекрасно знают, что такое 3D и с чем его едят. Но, все же, есть и те, кто смутно себе представляет, что кроется под этой короткой аббревиатурой. Статья рассчитана на тех, кто не имеет представления о компьютерной графике. Также будет немного экскурса в историю компьютерной графики (в следующих планируемых частях).
Почему именно 3D? Как нетрудно догадаться, речь идет о 3 Dimension, или о трех измерениях. И не обязательно при этом, чтобы и отображение было в 3D. Речь идет о способе построения картинки.

Часть 1. Собственно, моделирование
Традиционно рисуют в 2D (по осям X и Y) - на бумаге, холсте, дереве и т.п. При этом отображают какую-то одну из сторон предмета. Картинка сама по себе плоская. Но если мы хотим получить представление обо всех сторонах предмета, то необходимо нарисовать несколько рисунков. Так поступают в традиционной рисованной анимации. Но, вместе с тем, существует, (кстати, в СССР была довольно хорошо развита) т.н. кукольная анимация. Один раз изготовленную куклу снимают в необходимых позах и ракурсах, получая серию «плоских картинок». 3D (к X и Y добавляется координата глубины Z) визуализация - это те же «куклы», только существующие в цифровом виде. Другими словами, в специальных программах (Blender, 3ds Max, Maya, Cinema 4D и т.п.) создается объемное изображение, например авто.


Преимущество данного метода в том, что в распоряжении, скажем, аниматора есть объемная модель, необходимо лишь поместить ее должным образом в кадр, анимировать (задать траекторию передвижения или рассчитать с помощью симулятора) при необходимости, а уж отображение авто в финальной картинке ложится на специальную программу называемую визуализатором (render). Еще одно преимущество в том, что модель достаточно нарисовать один раз, а потом использовать в других проектах (скопировав), изменять, деформировать и т.п. по своему усмотрению. Для обычного 2D рисунка, в общем случае, такое невозможно. Третье преимущество - можно создавать практически бесконечно детализированные модели, например смоделировать даже винтики на часах и т.п. На общем плане этот винтик может быть и неразличим, но стоит нам приблизить камеру, программа-визуализатор сама рассчитает, что видно в кадре, а что - нет.

Существует несколько способов моделирования, но самым популярным является полигональное моделирование. Нередко можно увидеть в роликах о 3D или фантастических фильмах как тот или иной объект представляется в виде т.н. сетки. (см. рисунок выше) Это и есть пример полигонального моделирования. Суть его в том, что поверхности представляются в виде простых геометрических двумерных примитивов. В компьютерных играх это треугольники, для других целей обычно используют четырехугольники и фигуры с большим кол-вом углов. Эти примитивы, из которых состоит модель, называют полигонами . Но при создании 3D объекта стараются обойтись, как правило, четырехугольниками. При необходимости четырехугольники (полигоны) без проблем превращаются в треугольники при экспорте в игровой движок, а при необходимости сглаживания или тесселяции модель из четырехугольников получается, как правило, без артефактов.
Что такое тесселяция? Если какой-то объект представляется в виде полигонов (особенно органические объекты, например человек), то понятно, что чем меньше размер полигонов, чем их больше, тем более близкой может быть модель к оригиналу. На этом основан метод тесселяции: сначала изготавливают грубую болванку из небольшого кол-ва полигонов, затем применяют операцию тесселяции, при этом каждый полигон делится на 4 части. Так вот, если полигон четырехугольный (а еще лучше, близок к квадрату) то алгоритмы тесселяции дают более качественный и предсказуемый результат. Также операция сглаживания, а это та же тесселяция, только с изменением углов на более тупые, при близких к квадрату полигонах, позволяет получить хороший результат.


Как было сказано выше, чем больше полигонов, тем более модель может (может, потому, что модель должна быть еще похожа на оригинал, а это вопрос мастерства моделера, а не полигонов) походить на оригинал. Но у большого кол-ва полигонов есть обратная сторона: понижение производительности. Чем больше полигонов, тем больше точек по которым они строятся, тем больше данных приходится обрабатывать процессору. Поэтому 3D графика - это всегда компромисс между детализацией модели и производительностью. В связи с этим даже возникли термины: hight poly и low poly, соответственно высоко полигональная модель и низко полигональная модель. В играх применяются низко полигональные модели, так как в них выполняется визуализация в реальном времени. Кстати, модели в играх представлены треугольниками для повышения производительности: графические процессоры умеют на аппаратном уровне быстро обрабатывать сотни миллионов треугольников за секунду.

Как правило, полигональное моделирование относится к пустотелому моделированию, где объект имеет только объем, но внутри пустой. Это означает, что если мы смоделируем куб, а потом удалим одну из стенок, то увидим внутри пустоту. Также имеются программы для твердотельного моделирования, где тот же самый куб представлен в виде монолитного объекта. В таких программах (к примеру, Autodesk Inventor) применяются математические модели отличные от тех, что в полигональном моделировании. Алгоритмы твердотельного моделирования лучше подходят для моделирования механизмов при разработке техники. Программы вроде Autodesk Inventor имеют средства для моделирования с учетом особенностей технологического процесса, как то фаски, сверление отверстий, проставление размеров, допусков и т.п. Получаемые модели можно сразу отправить на подходящий станок для получения изделия в металле или другом материале.
Также существуют так называемые программы 3D лепки (ZBrush, Autodesk Mudbox) в которых моделирование сводится (грубо говоря) к созданию углублений или выпуклостей. Такая техника похожа на то, как скульпторы лепят из глины - убирая ненужное и добавляя необходимое. С помощью таких программ можно добиться реалистичного рельефа поверхности, например морщин на коже или складок ткани. В настоящее время высокополигональные (а для лепки модель должна обладать солидным кол-вом полигонов) реалистичные модели людей и вообще животного мира выполняются, в большинстве своем, с применение программы лепки. Распространена практика когда заготовка модели создается с помощью полигонального моделирования, а затем в программе лепки тесселируется и добавляются мелкие детали.

Но вот у нас есть готовая модель, скажем, танка. Но на танк, собственно, она не совсем похожа. В чем же тут дело? На данном этапе у нас всего лишь математическая модель содержащая данные только о геометрической форме. Но у реального объекта кроме формы есть еще и цвет, плотность, отражающая способность, и, возможно, запах. Последнее пока в 3D графике не применяется, а вот все остальное можно смоделировать. Придание модели нужного цвета и блеска называют текстурированием, от слова текстура.


В общем случае текстура - это двумерный рисунок который накладывается на 3D модель. Текстура может быть как процедурной - сгенерированной при помощи алгоритма, так и нарисованная в графическом редакторе, или фотографией реального объекта. С помощью текстуры задается рисунок и цвет модели, но реальная поверхность обладает и другими параметрами: отражающей способностью, преломлением, рельефом, позрачностью и т.п. Все эти параметры задаются в свойствах материала. Т.е. материал с точки зрения 3D графики - это некая математическая модель описывающая параметры поверхности. Например, для воды обязательно необходимо указать прозрачность и преломляющую, отражающую способности.
Перед «нанесением» материала на 3D модель необходимо создать ее развертку, т.е. представить все (несколько, одну) поверхности в виде проекции на плоскость. Это необходимо для того, чтобы затем двумерная текстура правильно «лягла» на модель.
Таким образом изготовление 3D модели в общем случае состоит из следующих стадий:
1. Получение изображений референса (т.е. того, с чего будет моделироваться) или самого референса. Или отрисовка экскиза.
2. Моделирование геометрии на основе референса.
3. Создание развертки.
4. Отрисовка текстур или получение их другим способом в виде файлов.
5. Настройка параметров материала (текстуры, преломление, отражение, прозрачность).
Теперь 3D модель готова для визуализации - получении картинки.
Первый и четвертый пункт могут быть быть опущены если модель простая, но, как правило, хороших результатов без всех 5 шагов не добиться.
Подытожим.
Между обычным рисунком, скажем, на бумаге, и построением 3D изображения есть существенные различия в самом процессе. Двумерный рисунок, как правило, создается в два этапа: эскиз и раскрашивание. В 3D графике после изготовления модели ее необходимо поместить в сцену к другим объектам (или в так называемую студию), добавить освещение, камеру и лишь затем можно надеяться получить финальную картинку. Изображение в 3Dграфике просчитывается на основе физической модели, как правило, это модель распространения луча света с учетом отражения, преломления, рассеивания и т.п. Рисуя красками мы сами отрисовываем тени, блики и т.д., а в трехмерной графике мы подготавливаем сцену с учетом освещения, материалов, геометрии, свойств камеры, программа рассчитывает итоговую картинку сама.

Вот, на сегодня пока и все. Комментарии, а особенно вопросы и замечания по существу приветствуются.

P.S. В следующих частях (если Хабрабществу будет интересно) мы более подробно поговорим о трехмерном моделировании для игр, будет затронута визуализация, моделирование динамических сред, таких как вода, разрушение объекта и затронем динамическое взаимодействие между 3D объектами, историю 3D графики.

Сегодня для нас уже привычно, что объемное кино можно смотреть и дома. Раньше так называемый стереофильм можно было увидеть лишь в кинотеатре, и то не в каждом. Сейчас эта технология имеет название 3d. Что такое 3d? На самом деле, 3d – это лишь аббревиатура (3 dimensions, то есть 3 измерения). Все, что способен увидеть здоровый человек вокруг – трехмерно, изображение же на экране обычного телевизора – двухмерно. Телевизор с 3d технологией позволяет видеть картинку почти как вживую, в объеме. Однако чтобы достичь такого эффекта, производителям пришлось поработать.

На сегодняшний день очень популярны две технологии 3d для домашнего телевидения: активная и пассивная. В чем их разница? Давайте выясним это.

Технология 3d активная

Чтобы получился красивый и объемный видеоряд, часть производителей решила пойти по пути чередования картинок по времени. Для этого были созданы специальные затворные очки. Такой инструмент для просмотра достаточно сложен и стоит недешево. Очки должны синхронизироваться с сигналом телевизора, в них человек может видеть картинку только одним глазом. Однако это происходит очень динамично. Очки закрывают с помощью затемнения одной линзы просмотр для глаза. Затем через долю секунды – для второго глаза.

Такое мелькание позволяет в результате видеть объемную сцену. Экран телевизора, в свою очередь, меняет изображение, в каждый момент времени, демонстрируя картинку, предназначенную только для одного глаза. Здесь важна синхронность с очками. Образ на экране меняется часто, в среднем – 60 раз в секунду. Соответственно и меняются глаза, которые могут видеть картинку.

Затворные очки требуется подзаряжать, так как они имеют свой обособленный источник питания. Кроме того, затемнение линз приводит к общему затемнению картинки. Что и есть одним из недостатком активного 3d. Чтобы устранить его, кино для просмотра в режиме 3d делают немного ярче.

Если кино качественное, что значит 3d технология была внедрена профессионально, эффект от него будет потрясающим.

Что значит пассивное 3d

Совсем по-другому работает пассивное 3d телевидение. Очки используются простенькие, поляризационные. В комплекте с телевизором, можно получить сразу несколько таких очков, поскольку они дешевы.

Телевизор оснащен особым фильтром, который делит экран построчно. Каждый глаз видит свою картинку, однако не за счет раздела их по времени, а за счет раздела по полосам-строчкам. Правый глаз видит четные строки, левый – нечетные, или наоборот. Поэтому высота экрана становится видимой ровно наполовину. Стоит сказать, что такое 3d лояльнее к нашим кошелькам, поскольку стоит дешевле.

Эксперты отмечают, что при пассивной 3d технологии, глаза зрителя не ощущают слишком сильного дискомфорта. Зато экран будет казаться шероховатым и демонстрировать все неровности и дефекты.

Так что же лучше

Производители по сей день не пришли к единому мнению, какая технология оптимальнее. Поэтому есть бренды, которые выпускают телеоборудование исключительно с активным 3d, есть же те – которые продвигают технологии с пассивным 3d. А есть и те, кто производит телевизоры с обоими принципами внедрения трехмерной картинки.

Недостатки каждого типа 3d технологий можно считать их основы построения.

Недостатки активного 3d

  • Активное 3d достигает нужного эффекта за счет смены картинок для каждого глаза по времени. Соответственно, движение процесса на экране замедляется. Как ни крути, а «моргание» забирает какой-то период. Это становится заметно в сценах, где быстрая динамика.
  • Глаза не каждого зрителя могут спокойно вынести подобную нагрузку, поэтому некоторые киноманы жалуются на резь в глазах, иногда на головные боли.
  • Уменьшение яркости. Любой фильм будет немного темнее, если применять затворные очки.
  • Пассивное 3d достигает объема за счет показа каждому глазу одновременно только части картинки (зритель каждым глазом видит только половину экрана). Значит, высота экрана станет меньше вдвое.
  • Считается, что качество видео, которое мы видим в телевизорах с пассивным 3d ниже, чем в активном.
  • Чтобы кино просматривалось с максимальным погружением, желательно приобретать телевизор подороже, что значит 3d в нем будет наиболее эффектен. А это уже размывает границу в цене между двумя этими технологиями.
  • Смотреть кино с близкого расстояния не выйдет полноценно. Желательно рассчитывать, чтобы телевизор не стоял ближе трех метров к зрителю. Что не критично для активно-затворной технологии.

Недостатки пассивного 3d

Выбирая телевизор с 3d, важно не только определиться, каким методом будет формироваться объемное изображение. Нужно также оценить качество цветопередачи. Этот показатель архиважный для тех, кто хочет увидеть воочию, что такое 3d технология. Частота обновления экрана – тоже не последний фактор. Чем она выше, тем эффектней будет просмотр. Однако этот показатель существенно влияет на цену.

Важно также понимать, что хорошего кино выполненного в 3d технологии не так уж и много. Поэтому смотреть ежедневно новый фильм в спец очках вряд ли получится. Хотя, этот недостаток в скором времени будет исправлен, так как объемы 3d-контента растут так же, как и выпуск телевизоров.

Что характерно, люди, которые посмотрели несколько видеоработ на телевизорах с разной 3d технологией, не сходятся в едином мнении, какой из них лучше. Поэтому при выборе нового ТВ, стоит решить для себя, какие недостатки для вас не принципиальны. Только потом, следует покупать оборудование.

Loading...Loading...