В правильной пирамиде sabc. Пирамида

Определение

Пирамида – это многогранник, составленный из многоугольника \(A_1A_2...A_n\) и \(n\) треугольников с общей вершиной \(P\) (не лежащей в плоскости многоугольника) и противолежащими ей сторонами, совпадающими со сторонами многоугольника.
Обозначение: \(PA_1A_2...A_n\) .
Пример: пятиугольная пирамида \(PA_1A_2A_3A_4A_5\) .

Треугольники \(PA_1A_2, \ PA_2A_3\) и т.д. называются боковыми гранями пирамиды, отрезки \(PA_1, PA_2\) и т.д. – боковыми ребрами , многоугольник \(A_1A_2A_3A_4A_5\) – основанием , точка \(P\) – вершиной .

Высота пирамиды – это перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида, в основании которой лежит треугольник, называется тетраэдром .

Пирамида называется правильной , если в ее основании лежит правильный многоугольник и выполнено одно из условий:

\((a)\) боковые ребра пирамиды равны;

\((b)\) высота пирамиды проходит через центр описанной около основания окружности;

\((c)\) боковые ребра наклонены к плоскости основания под одинаковым углом.

\((d)\) боковые грани наклонены к плоскости основания под одинаковым углом.

Правильный тетраэдр – это треугольная пирамида, все грани которой – равные равносторонние треугольники.

Теорема

Условия \((a), (b), (c), (d)\) эквивалентны.

Доказательство

Проведем высоту пирамиды \(PH\) . Пусть \(\alpha\) – плоскость основания пирамиды.


1) Докажем, что из \((a)\) следует \((b)\) . Пусть \(PA_1=PA_2=PA_3=...=PA_n\) .

Т.к. \(PH\perp \alpha\) , то \(PH\) перпендикулярна любой прямой, лежащей в этой плоскости, значит, треугольники – прямоугольные. Значит, эти треугольники равны по общему катету \(PH\) и гипотенузам \(PA_1=PA_2=PA_3=...=PA_n\) . Значит, \(A_1H=A_2H=...=A_nH\) . Значит, точки \(A_1, A_2, ..., A_n\) находятся на одинаковом расстоянии от точки \(H\) , следовательно, лежат на одной окружности с радиусом \(A_1H\) . Эта окружность по определению и есть описанная около многоугольника \(A_1A_2...A_n\) .

2) Докажем, что из \((b)\) следует \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и равны по двум катетам. Значит, равны и их углы, следовательно, \(\angle PA_1H=\angle PA_2H=...=\angle PA_nH\) .

3) Докажем, что из \((c)\) следует \((a)\) .

Аналогично первому пункту треугольники \(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и по катету и острому углу. Значит, равны и их гипотенузы, то есть \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Докажем, что из \((b)\) следует \((d)\) .

Т.к. в правильном многоугольнике совпадают центры описанной и вписанной окружности (вообще говоря, эта точка называется центром правильного многоугольника), то \(H\) – центр вписанной окружности. Проведем перпендикуляры из точки \(H\) на стороны основания: \(HK_1, HK_2\) и т.д. Это – радиусы вписанной окружности (по определению). Тогда по ТТП (\(PH\) – перпендикуляр на плоскость, \(HK_1, HK_2\) и т.д. – проекции, перпендикулярные сторонам) наклонные \(PK_1, PK_2\) и т.д. перпендикулярны сторонам \(A_1A_2, A_2A_3\) и т.д. соответственно. Значит, по определению \(\angle PK_1H, \angle PK_2H\) равны углам между боковыми гранями и основанием. Т.к. треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по двум катетам), то и углы \(\angle PK_1H, \angle PK_2H, ...\) равны.

5) Докажем, что из \((d)\) следует \((b)\) .

Аналогично четвертому пункту треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по катету и острому углу), значит, равны отрезки \(HK_1=HK_2=...=HK_n\) . Значит, по определению, \(H\) – центр вписанной в основание окружности. Но т.к. у правильных многоугольников центры вписанной и описанной окружности совпадают, то \(H\) – центр описанной окружности. Чтд.

Следствие

Боковые грани правильной пирамиды – равные равнобедренные треугольники.

Определение

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой .
Апофемы всех боковых граней правильной пирамиды равны между собой и являются также медианами и биссектрисами.

Важные замечания

1. Высота правильной треугольной пирамиды падает в точку пересечения высот (или биссектрис, или медиан) основания (основание – правильный треугольник).

2. Высота правильной четырехугольной пирамиды падает в точку пересечения диагоналей основания (основание – квадрат).

3. Высота правильной шестиугольной пирамиды падает в точку пересечения диагоналей основания (основание – правильный шестиугольник).

4. Высота пирамиды перпендикулярна любой прямой, лежащей в основании.

Определение

Пирамида называется прямоугольной , если одно ее боковое ребро перпендикулярно плоскости основания.


Важные замечания

1. У прямоугольной пирамиды ребро, перпендикулярное основанию, является высотой пирамиды. То есть \(SR\) – высота.

2. Т.к. \(SR\) перпендикулярно любой прямой из основания, то \(\triangle SRM, \triangle SRP\) – прямоугольные треугольники.

3. Треугольники \(\triangle SRN, \triangle SRK\) – тоже прямоугольные.
То есть любой треугольник, образованный этим ребром и диагональю, выходящей из вершины этого ребра, лежащей в основании, будет прямоугольным.

\[{\Large{\text{Объем и площадь поверхности пирамиды}}}\]

Теорема

Объем пирамиды равен трети произведения площади основания на высоту пирамиды: \

Следствия

Пусть \(a\) – сторона основания, \(h\) – высота пирамиды.

1. Объем правильной треугольной пирамиды равен \(V_{\text{прав.треуг.пир.}}=\dfrac{\sqrt3}{12}a^2h\) ,

2. Объем правильной четырехугольной пирамиды равен \(V_{\text{прав.четыр.пир.}}=\dfrac13a^2h\) .

3. Объем правильной шестиугольной пирамиды равен \(V_{\text{прав.шест.пир.}}=\dfrac{\sqrt3}{2}a^2h\) .

4. Объем правильного тетраэдра равен \(V_{\text{прав.тетр.}}=\dfrac{\sqrt3}{12}a^3\) .

Теорема

Площадь боковой поверхности правильной пирамиды равна полупроизведению периметра основания на апофему.

\[{\Large{\text{Усеченная пирамида}}}\]

Определение

Рассмотрим произвольную пирамиду \(PA_1A_2A_3...A_n\) . Проведем через некоторую точку, лежащую на боковом ребре пирамиды, плоскость параллельно основанию пирамиды. Данная плоскость разобьет пирамиду на два многогранника, один из которых – пирамида (\(PB_1B_2...B_n\) ), а другой называется усеченная пирамида (\(A_1A_2...A_nB_1B_2...B_n\) ).


Усеченная пирамида имеет два основания – многоугольники \(A_1A_2...A_n\) и \(B_1B_2...B_n\) , которые подобны друг другу.

Высота усеченной пирамиды – это перпендикуляр, проведенный из какой-нибудь точки верхнего основания к плоскости нижнего основания.

Важные замечания

1. Все боковые грани усеченной пирамиды – трапеции.

2. Отрезок, соединяющий центры оснований правильной усеченной пирамиды (то есть пирамиды, полученной сечением правильной пирамиды), является высотой.

Пирамида. Усеченная пирамида

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .



Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.


Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).


Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).


Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:


Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:


Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.


Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Треугольная пирамида - это пирамида, в основе которой находится треугольник. Высота этой пирамиды - это перпендикуляр, который опущен из вершины пирамиды на ее основания.

Нахождение высоты пирамиды

Как найти высоту пирамиды? Очень просто! Для нахождения высоты любой треугольной пирамиды можно воспользоваться формулой объема: V = (1/3)Sh, где S - это площадь основания, V - объем пирамиды, h - ее высота. Из этой формулы вывести формулу высоты: для нахождения высоты треугольной пирамиды, нужно умножить объем пирамиды на 3, а потом поделить получившееся значение на площадь основания, это будет: h = (3V)/S. Поскольку основание треугольной пирамиды - это треугольник, можно воспользоваться формулой подсчета площади треугольника. Если нам известны: площадь треугольника S и его сторона z, то по формуле площади S=(1/2)γh: h = (2S)/γ, где h - это высота пирамиды, γ - это ребро треугольника; угол между сторонами треугольника и сами две стороны, то по такой формуле: S = (1/2)γφsinQ, где γ, φ - это стороны треугольника, находим площадь треугольника. Значение синуса угла Q нужно посмотреть в таблице синусов, которая есть в Интернете. Далее подставляем значение площади в формулу высоты: h = (2S)/γ. Если в задании требуется вычислить высоту треугольной пирамиды, то объем пирамиды уже известен.

Правильная треугольная пирамида

Найдите высоту правильной треугольной пирамиды, то есть пирамиды, в которой все грани - это равносторонние треугольники, зная величину ребра γ. В этом случае ребра пирамиды - это стороны равносторонних треугольников. Высота правильной треугольной пирамиды будет: h = γ√(2/3), где γ - это ребро равностороннего треугольника, h - это высота пирамиды. Если площадь основания (S) неизвестна, а даны лишь: длина ребра (γ) и объем (V) многогранника, то необходимую переменную в формуле из прежнего шага нужно заменить ее эквивалентом, который выражен через длину ребра. Площадь треугольника (правильного) равна 1/4 от произведения длины стороны этого треугольника, возведенную в квадрат на квадратный корень из 3. Подставляем эту формулу вместо площади основания в предыдущую формулу, и получаем такую формулу: h = 3V4/(γ 2 √3) = 12V/(γ 2 √3). Объем тетраэдра можно выразить через длину его ребра, то из формулы для вычисления высоты фигуры можно убрать все переменные и оставить только сторону треугольной грани фигуры. Объем такой пирамиды можно вычислить, поделив на 12 из произведения возведенную в куб длину его грани на квадратный корень из 2.

Подставляем это выражение в предыдущую формулу, получаем такую формулу для вычисления: h = 12(γ 3 √2/12)/(γ 2 √3) = (γ 3 √2)/(γ 2 √3) = γ√(2/3) = (1/3)γ√6. Также правильную треугольную призму можно вписывать в сферу, и зная только радиус сферы (R) можно найти и саму высоту тетраэдра. Длина ребра тетраэдра равна: γ = 4R/√6. Заменим переменную γ этим выражением в предыдущей формуле и получаем формулу: h = (1/3)√6(4R)/√6 = (4R)/3. Такую же формулу можно иметь, зная радиус (R) окружности, вписанной в тетраэдр. В таком случае длина ребра треугольника будет равна 12 соотношениям между квадратным корнем из 6 и радиусом. Подставляем это выражение в предыдущую формулу и имеем: h = (1/3)γ√6 = (1/3)√6(12R)/√6 = 4R.

Как найти высоту правильной четырехугольной пирамиды

Чтобы ответить на вопрос, как найти длину высоты пирамиды, необходимо знать, сто такое правильная пирамида. Четырехугольная пирамида - это пирамида, в основе которой находится четырехугольник. Если в условиях задачи мы имеем: объем (V) и площадь основания (S) пирамиды, то формула для вычисления высоты многогранника (h) будет такая - разделить объем, умноженный на 3 на площадь S: h = (3V)/S. При квадратном основании пирамиды с известными: заданным объемом (V) и длиной стороны γ, замените площадь (S) в предыдущей формуле на квадрат длины стороны: S = γ 2 ; H = 3V/γ 2 . Высота правильной пирамиды h = SO проходит как раз через центр окружности, которая описанная около основания. Поскольку основание данной пирамиды - это квадрат, то точка О - это точка пересечения диагоналей AD и BC. Мы имеем: OC = (1/2)BC = (1/2)AB√6. Далее, мы в прямоугольном треугольнике SOC находим (по теореме Пифагора): SO = √(SC 2 -OC 2). Теперь Вы знаете, как найти высоту правильной пирамиды.

Продолжаем рассматривать задачи входящие в ЕГЭ по математике. Мы уже исследовали задачи, где в условии дан и требуется найти расстояние между двумя данными точками либо угол.

Пирамида - это многогранник, основание которого является многоугольником, остальные грани - треугольники, при чём они имеют общую вершину.

Правильная пирамида — это пирамида в основании которой лежит правильный многоугольник, а его вершина проецируется в центр основания.

Правильная четырехугольная пирамида — снованием является квадрат.Вершина пирамиды проектируется в точку пересечения диагоналей основания (квадрата).


ML - апофема
∠MLO - двугранный угол при основании пирамиды
∠MCO - угол между боковым ребром и плоскостью основания пирамиды

В этой статье мы с вами рассмотрим задачи на решение правильной пирамиды. Требуется найти какой-либо элемент, площадь боковой поверхности, объём, высоту. Разумеется, необходимо знать теорему Пифагора, формулу площади боковой поверхности пирамиды, формулу для нахождения объёма пирамиды.

В статье « » представлены формулы, которые необходимы для решения задач по стереометрии. Итак, задачи:

SABCD точка O - центр основания, S вершина, SO = 51, AC = 136. Найдите боковое ребро SC .

В данном случае в основании лежит квадрат. Это означает, что диагонали AC и BD равны, они пересекаются и точкой пересечения делятся пополам. Отметим, что в правильной пирамиде высота опущенная из её вершины проходит через центр основания пирамиды. Таким образом, SO является высотой, а треугольник SOC прямоугольный. Тогда по теореме Пифагора:

Как извлекать корень из большого числа .

Ответ: 85

Решите самостоятельно:

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, AC = 6. Найдите боковое ребро SC .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SC = 5, AC = 6. Найдите длину отрезка SO .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, SC = 5. Найдите длину отрезка AC .

SABC R - середина ребра BC , S - вершина. Известно, что AB = 7, а SR = 16. Найдите площадь боковой поверхности.

Площадь боковой поверхности правильной треугольной пирамиды равна половине произведения периметра основания на апофему (апофема это высота боковой грани правильной пирамиды, проведённая из её вершины):

Или можно сказать так: площадь боковой поверхности пирамиды равна сумме площадей трёх боковых граней. Боковыми гранями в правильной треугольной пирамиде являются равные по площади треугольники. В данном случае:

Ответ: 168

Решите самостоятельно:

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а площадь боковой поверхности равна 3. Найдите длину отрезка SR .

В правильной треугольной пирамиде SABC L - середина ребра BC , S - вершина. Известно, что SL = 2, а площадь боковой поверхности равна 3. Найдите длину отрезка AB .

В правильной треугольной пирамиде SABC M . Площадь треугольника ABC равна 25, объем пирамиды равен 100. Найдите длину отрезка MS .

Основание пирамиды - равносторонний треугольник . Поэтому M является центром основания, а MS - высотой правильной пирамиды SABC . Объем пирамиды SABC равен: осмотреть решение

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Площадь треугольника ABC равна 3, MS = 1. Найдите объем пирамиды.

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Объем пирамиды равен 1, MS = 1. Найдите площадь треугольника ABC .

На этом закончим. Как видите, задачи решаются в одно-два действия. В будущем рассмотрим с вами другие задачи из данной части, где даны тела вращения, не пропустите!

Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Данный видеоурок поможет пользователям получить представление о теме Пирамида. Правильная пирамида. На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение. Рассмотрим, что такое правильная пирамида и какими свойствами она обладает. Затем докажем теорему о боковой поверхности правильной пирамиды.

На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение.

Рассмотрим многоугольник А 1 А 2 ...А n , который лежит в плоскости α, и точку P , которая не лежит в плоскости α (рис. 1). Соединим точку P с вершинами А 1 , А 2 , А 3 , … А n . Получим n треугольников: А 1 А 2 Р , А 2 А 3 Р и так далее.

Определение . Многогранник РА 1 А 2 …А n , составленный из n -угольника А 1 А 2 ...А n и n треугольников РА 1 А 2 , РА 2 А 3 РА n А n -1 , называется n -угольной пирамидой. Рис. 1.

Рис. 1

Рассмотрим четырехугольную пирамиду PABCD (рис. 2).

Р - вершина пирамиды.

ABCD - основание пирамиды.

РА - боковое ребро.

АВ - ребро основания.

Из точки Р опустим перпендикуляр РН на плоскость основания АВСD . Проведенный перпендикуляр является высотой пирамиды.

Рис. 2

Полная поверхность пирамиды состоит из поверхности боковой, то есть площади всех боковых граней, и площади основания:

S полн = S бок + S осн

Пирамида называется правильной, если:

  • ее основание - правильный многоугольник;
  • отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.

Пояснение на примере правильной четырехугольной пирамиды

Рассмотрим правильную четырехугольную пирамиду PABCD (рис. 3).

Р - вершина пирамиды. Основание пирамиды АВСD - правильный четырехугольник, то есть квадрат. Точка О , точка пересечения диагоналей, является центром квадрата. Значит, РО - это высота пирамиды.

Рис. 3

Пояснение : в правильном n -угольнике центр вписанной и центр описанной окружности совпадает. Этот центр и называется центром многоугольника. Иногда говорят, что вершина проектируется в центр.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой и обозначается h а .

1. все боковые ребра правильной пирамиды равны;

2. боковые грани являются равными равнобедренными треугольниками.

Доказательство этих свойств приведем на примере правильной четырехугольной пирамиды.

Дано : РАВСD - правильная четырехугольная пирамида,

АВСD - квадрат,

РО - высота пирамиды.

Доказать :

1. РА = РВ = РС = РD

2. ∆АВР = ∆ВCР =∆СDР =∆DAP См. Рис. 4.

Рис. 4

Доказательство .

РО - высота пирамиды. То есть, прямая РО перпендикулярна плоскости АВС , а значит, и прямым АО, ВО, СО и , лежащим в ней. Значит, треугольники РОА, РОВ, РОС, РОD - прямоугольные.

Рассмотрим квадрат АВСD . Из свойств квадрата следует, что АО = ВО = СО = DО.

Тогда у прямоугольных треугольников РОА, РОВ, РОС, РОD катет РО - общий и катеты АО, ВО, СО и равны, значит, эти треугольники равны по двум катетам. Из равенства треугольников вытекает равенство отрезков, РА = РВ = РС = РD. Пункт 1 доказан.

Отрезки АВ и ВС равны, так как являются сторонами одного квадрата, РА = РВ = РС . Значит, треугольники АВР и ВCР - равнобедренные и равны по трем сторонам.

Аналогичным образом получаем, что треугольники АВР, ВCР, СDР, DAP равнобедренны и равны, что и требовалось доказать в пункте 2.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему:

Для доказательства выберем правильную треугольную пирамиду.

Дано : РАВС - правильная треугольная пирамида.

АВ = ВС = АС.

РО - высота.

Доказать : . См. Рис. 5.

Рис. 5

Доказательство.

РАВС - правильная треугольная пирамида. То есть АВ = АС = ВС . Пусть О - центр треугольника АВС , тогда РО - это высота пирамиды. В основании пирамиды лежит равносторонний треугольник АВС . Заметим, что .

Треугольники РАВ, РВC, РСА - равные равнобедренные треугольники (по свойству). У треугольной пирамиды три боковые грани: РАВ, РВC, РСА . Значит, площадь боковой поверхности пирамиды равна:

S бок = 3S РАВ

Теорема доказана.

Радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м, высота пирамиды равна 4 м. Найдите площадь боковой поверхности пирамиды.

Дано : правильная четырехугольная пирамида АВСD ,

АВСD - квадрат,

r = 3 м,

РО - высота пирамиды,

РО = 4 м.

Найти : S бок. См. Рис. 6.

Рис. 6

Решение .

По доказанной теореме, .

Найдем сначала сторону основания АВ . Нам известно, что радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м.

Тогда, м.

Найдем периметр квадрата АВСD со стороной 6 м:

Рассмотрим треугольник BCD . Пусть М - середина стороны DC . Так как О - середина BD , то (м).

Треугольник DPC - равнобедренный. М - середина DC . То есть, РМ - медиана, а значит, и высота в треугольнике DPC . Тогда РМ - апофема пирамиды.

РО - высота пирамиды. Тогда, прямая РО перпендикулярна плоскости АВС , а значит, и прямой ОМ , лежащей в ней. Найдем апофему РМ из прямоугольного треугольника РОМ .

Теперь можем найти боковую поверхность пирамиды:

Ответ : 60 м 2 .

Радиус окружности, описанной около основания правильной треугольной пирамиды, равен м. Площадь боковой поверхности равна 18 м 2 . Найдите длину апофемы.

Дано : АВСP - правильная треугольная пирамиды,

АВ = ВС = СА,

R = м,

S бок = 18 м 2 .

Найти : . См. Рис. 7.

Рис. 7

Решение .

В правильном треугольнике АВС дан радиус описанной окружности. Найдем сторону АВ этого треугольника с помощью теоремы синусов.

Зная сторону правильного треугольника ( м), найдем его периметр.

По теореме о площади боковой поверхности правильной пирамиды , где h а - апофема пирамиды. Тогда:

Ответ : 4 м.

Итак, мы рассмотрели, что такое пирамида, что такое правильная пирамида, доказали теорему о боковой поверхности правильной пирамиды. На следующем уроке мы познакомимся с усечённой пирамидой.

Список литературы

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 008. - 233 с.: ил.
  1. Интернет портал «Якласс» ()
  2. Интернет портал «Фестиваль педагогических идей «Первое сентября» ()
  3. Интернет портал «Slideshare.net» ()

Домашнее задание

  1. Может ли правильный многоугольник быть основанием неправильной пирамиды?
  2. Докажите, что непересекающиеся ребра правильной пирамиды перпендикулярны.
  3. Найдите величину двугранного угла при стороне основания правильной четырехугольной пирамиды, если апофема пирамиды равна стороне ее основания.
  4. РАВС - правильная треугольная пирамида. Постройте линейный угол двугранного угла при основании пирамиды.
Loading...Loading...