Общая формула для движения по наклонной плоскости. Задачи на тему движение по наклонной плоскости. Порядок выполнения работы

Несмотря на другие условия движения принципиально решение задачи 8 ничем не отличается от решения задачи 7. Отличие состоит лишь в том, что в задаче 8 действующие на тело силы не лежат вдоль одной прямой, поэтому проекции необходимо взять на две оси.

Задача 8. Лошадь везет сани массой 230 кг, действуя на них с силой 250 Н. Какое расстояние пройдут сани, пока достигнут скорости 5,5 м/с, двигаясь из состояния покоя. Коэффициент трения скольжения саней о снег равен 0,1, а оглобли расположены под углом 20° к горизонту.

На сани действуют четыре силы: сила тяги (натяжения), направленная под углом 20° к горизонту; сила тяжести, направленная вертикально вниз (всегда); сила реакции опоры, направленная перпендикулярно опоре от нее, т. е. вертикально вверх (в данной задаче); сила трения скольжения, направленная против движения. Поскольку сани будут двигаться поступательно, все приложенные силы можно параллельно перенести в одну точку – в центр масс движущегося тела (саней). Через эту же точку проведем и оси координат (рис. 8).

На основании второго закона Ньютона запишем уравнение движения :

.

Направим ось Ox горизонтально вдоль направления движения (см. рис. 8), а ось Oy – вертикально вверх. Возьмем проекции векторов, входящих в уравнение, на координатные оси, добавим выражение для силы трения скольжения и получим систему уравнений:

Решим систему уравнений. (Схема решения системы уравнений, подобных системе, обычно одинакова: из второго уравнения выражают силу реакции опоры и подставляют ее в третье уравнение, а затем выражение для силы трения подставляют в первое уравнение.) В результате получим:

Перегруппируем слагаемые в формуле и разделим ее правую и левую части на массу:

.

Поскольку ускорение не зависит от времени, выберем формулу кинематики равноускоренного движения, содержащую скорость, ускорение и перемещение:

.

Учитывая, что начальная скорость равна нулю, а скалярное произведение одинаково направленных векторов равно произведению их модулей, подставим ускорение и выразим модуль перемещения:

;

Полученное значение и есть ответ задачи, поскольку при прямолинейном движении пройденный путь и модуль перемещения совпадают.

Ответ : сани пройдут 195 м.

    1. Движение по наклонной плоскости

Описание движения небольших тел по наклонной плоскости принципиально не отличается от описания движения тел по вертикали и по горизонтали, поэтому при решении задач на этот вид движения, как и в задачах 7, 8, также необходимо записать уравнение движения и взять проекции векторов на координатные оси. Разбирая решение задачи 9, необходимо обратить внимание на схожесть подхода к описанию различных видов движения и на нюансы, которые отличают решение этого типа задач от решения задач, рассмотренных выше.

Задача 9. Лыжник соскальзывает с длинной ровной заснеженной горки, угол наклона к горизонту которой составляет 30°, а длина равна 140 м. Сколько времени будет длиться спуск, если коэффициент трения скольжения лыж о рыхлый снег равен 0,21?

Дано:

Решение.

Движение лыжника по нак-лонной плоскости происходит под действием трех сил: силы тяжести, направленной вертикально вниз; силы реакции опоры, направленной перпендикулярно к опоре; силы трения скольжения, направленной против движения тела. Пренебрегая размерами лыжника по сравнению с длиной горки, на основании второго закона Ньютона запишем уравнение движения лыжника:

.

Выберем ось Ox вниз вдоль наклонной плоскости (рис. 9), а ось Oy – перпендикулярно наклонной плоскости вверх. Возьмем проекции векторов уравнения на выбранные координатные оси с учетом того, что ускорение направлено вдоль наклонной плоскости вниз, и добавим к ним выражение, определяющее силу трения скольжения. Получим систему уравнений:

Решим систему уравнений относительно ускорения. Для этого из второго уравнения системы выразим силу реакции опоры и подставим полученную формулу в третье уравнение, а выражение для силы трения – в первое. После сокращения массы имеем формулу:

.

Ускорение не зависит от времени, значит, можно воспользоваться формулой кинематики равноускоренного движения, содержащей перемещение, ускорение и время:

.

С учетом того, что начальная скорость лыжника равна нулю, а модуль перемещения равен длине горки, выразим из формулы время и, подставляя в полученную формулу ускорение, получим:

;

Ответ : время спуска с горы 9,5 с.

Аналогично рычагу , наклонные плоскости уменьшают усилие, необходимое для подъема тел. Например, бетонный блок весом 45 килограммов поднять руками довольно сложно, однако втащить его наверх по наклонной плоскости вполне возможно. Вес тела, размещенного на наклонной плоскости, раскладывается на две составляющие, одна из которых параллельна, а другая перпендикулярна ее поверхности. Для перемещения блока вверх по наклонной плоскости человек должен преодолеть только параллельную составляющую, величина которой растет с увеличением угла наклона плоскости.

Наклонные плоскости весьма разнообразны по конструктивному выполнению. Например, винт состоит из наклонной плоскости (резьбы), обвивающей по спирали его цилиндрическую часть. При вворачивании винта в деталь, его резьба проникает в тело детали, образуя очень прочное соединение за счет большого трения между деталью и витками резьбы. Тиски преобразуют действие рычага и вращательное движение винта в линейную сдавливающую силу. По такому же принципу работает и домкрат, используемый для подъема тяжелых грузов.

Силы на наклонной плоскости

У тела, находящегося на наклонной плоскости, сила тяжести действует параллельно и перпендикулярно ее поверхности. Для перемещения тела вверх по наклонной плоскости необходима сила, равная по величине составляющей силы тяжести, параллельной поверхности плоскости.

Наклонные плоскости и винты

Родство винта с наклонной плоскостью легко проследить, если обернуть цилиндр разрезанным по диагонали листом бумаги. Образующаяся спираль идентична по расположению резьбе винта.

Силы, действующие на винт

При повороте винта его резьба создает очень большую силу, приложенную к материалу детали, в которую он ввернут. Эта сила тащит винт вперед, если он поворачивается по часовой стрелке, и назад, если он поворачивается против часовой стрелки.

Винт для подъема тяжестей

Вращающиеся винты домкратов развивают огромную силу, позволяя им поднимать столь тяжелые тела как легковые или грузовые автомобили. При повороте центрального винта рычагом два конца домкрата стягиваются вместе, производя необходимый подъем.

Наклонные плоскости для расщепления

Клин состоит из двух наклонных плоскостей, соединенных своими основаниями. При забивании клина в дерево наклонные плоскости развивают боковые силы, достаточные для расщепления самых прочных пиломатериалов.

Сила и работа

Несмотря на то, что наклонная плоскость может облегчить задачу, она не уменьшает количество работы, требующееся для ее выполнения. Подъем бетонного блока весом 45 кг (W) на 9 метров вертикально вверх (дальний рисунок справа) требует совершения работы 45x9 килограммометров, что соответствует произведению веса блока на величину перемещения. Когда блок находится на наклонной плоскости с углом наклона 44,5°, сила (F), необходимая для втаскивания блока, уменьшается до 70 процентов от его веса. Хотя это и облегчает перемещение блока, зато теперь, чтобы, поднять блок на высоту 9 метров, его необходимо тащить по плоскости 13 метров. Другими словами выигрыш в силе равен высоте подъема (9 метров), деленной на длину перемещения по наклонной плоскости (13 метров).

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по наклонной плоскости; 2) чему равна сила трения, если тело лежит неподвижно; 3) при каком минимальном значении угла наклона a тело начинает соскальзывать с наклонной плоскости.

а) б)

Сила трения будет препятство­вать движению, следовательно, она будет направлена вверх по наклонной плоскости (рис. 14.3,б ). Кроме силы трения, на тело действуют еще сила тяжести и сила нормальной реакции . Введем систему координат ХОУ , как по­казано на рисунке, и найдем проекции всех указанных сил на коор­динатные оси:

Х : F трХ = –F тр, N X = 0, mg X = mg sina;

Y : F трY = 0, N Y = N , mg Y = –mg cosa.

Поскольку ускоряться тело может только по наклонной плоскости, то есть вдоль оси X , то очевидно, что проекция вектора ускорения на ось Y всегда будет равна нулю: а Y = 0, а значит, сумма проекций всех сил на ось Y также должна равняться нулю:

F трY + N Y + mg Y = 0 Þ 0 + N – mg cosa = 0 Þ

N = mg cosa. (14.4)

Тогда сила трения скольжения согласно формуле (14.3) равна:

F тр.ск = mN = mmg cosa. (14.5)

Если тело покоится , то сумма проекций всех сил, действующих на тело, на ось Х должна равняться нулю:

F трХ + N Х + mg Х = 0 Þ –F тр + 0 + mg sina = 0 Þ

F тр.п = mg sina. (14.6)

Если мы будем постепенно увеличивать угол наклона, то величина mg sina будет постепенно увеличиваться, а значит, будет уве­личиваться и сила трения покоя, которая всегда «автоматически подстраивается» под внешнее воздействие и компенсирует его.

Но, как мы знаем, «возможности» силы трения покоя не безгранич­ны. При каком-то угле a 0 весь «ресурс» силы трения покоя будет исчерпан: она достигнет своего максимального значения, равного силе трения скольжения. Тогда будет справедливо равенство:

F тр.ск = mg sina 0 .

Подставив в это равенство значение F тр.ск из формулы (14.5), получим: mmg cosa 0 = mg sina 0 .

Разделив обе части последнего равенства на mg cosa 0 , получим:

Þ a 0 = arctgm.

Итак, угол a, при котором начинается скольжение тела по наклонной плоскости, задается формулой:

a 0 = arctgm. (14.7)

Заметим, что если a = a 0 , то тело может или лежать неподвижно (если к нему не прикасаться), или скользить с постоянной скоростью вниз по наклонной плоскости (если его чуть-чуть толкнуть). Если a < a 0 , то тело «стабильно» неподвижно, и легкий толчок не произведет на него никакого «впечатления». А если a > a 0 , то тело будет соскальзывать с наклонной плоскости с ускорением и безо всяких толчков.

Задача 14.1. Человек везет двое связанных между собой саней (рис. 14.4,а ), прикладывая силу F под углом a к горизонту. Массы саней одинаковы и равны т . Коэффициент трения полозьев по снегу m. Найти ускорение саней и силу натяжения Т веревки между санями, а также силу F 1 , с которой должен тянуть веревку человек для того, чтобы сани двигались равномерно.

F a m m а) б) Рис. 14.4
а = ? Т = ? F 1 = ?

Решение . Запишем второй закон Ньютона для каждых саней в проекциях на оси х и у (рис. 14.4,б ):

I у : N 1 + F sina – mg = 0, (1)

x : F cosa – T – mN 1 = ma ; (2)

II у : N 2 – mg = 0, (3)

x : T – mN 2 = ma . (4)

Из (1) находим N 1 = mg – F sina, из (3) и (4) находим Т = mmg+ + ma. Подставляя эти значения N 1 и Т в (2), получаем

.

Подставляя а в (4), получаем

T = mN 2 + ma = mmg + та =

Mmg + т .

Чтобы найти F 1 , приравняем выражение для а к нулю:

Ответ : ; ;

.

СТОП! Решите самостоятельно: В1, В6, С3.

Задача 14.2. Два тела массами т и М связаны нитью, как показано на рис. 14.5,а . С каким ускорением движется тело М , если коэффициент трения о поверхность стола m. Каково натяжение нити Т ? Какова сила давления на ось блока?

т М m Решение. Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 (рис. 14.5,б ), учитывая, что : х 1: Т – mMg = Ма , (1) х 2: mg – T = ma . (2) Решая систему уравнений (1) и (2), находим:
а = ? Т = ? R = ?

Если грузы не движутся, то .

Ответ : 1) если т < mМ , то а = 0, Т = mg , ; 2) если т ³ mМ , то , , .

СТОП! Решите самостоятельно: В9–В11, С5.

Задача 15.3. Два тела массами т 1 и т 2 связаны нитью, перекинутой через блок (рис. 14.6). Тело т 1 находится на наклонной плоскости с углом наклона a. Коэффициент трения о плоскость m. Тело массой т 2 висит на нити. Найти ускорение тел, силу натяжения нити и силу давления блока на ось при условии, когда т 2 < т 1 . Считать tga > m.

Рис. 14.7

Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 , учитывая, что и :

х 1: т 1 g sina – Т – mm 1 g cosa = m 1 a ,

х 2: T – m 2 g = m 2 a .

, .

Так как а >0, то

Если неравенство (1) не выполняется, то груз т 2 точно не движется вверх! Тогда возможны еще два варианта: 1) система неподвижна; 2) груз т 2 движется вниз (а груз т 1 , соответственно, вверх).

Предположим, что груз т 2 движется вниз (рис. 14.8).

Рис. 14.8

Тогда уравнения второго закона Ньютона на оси х 1 и х 2 будут иметь вид:

х 1: Т – т 1 g sina mm 1 g cosa = m 1 a ,

х 2: m 2 g – Т = m 2 a .

Решая эту систему уравнений, находим:

, .

Так как а >0, то

Итак, если выполняется неравенство (1), то груз т 2 едет вверх, а если выполняется неравенство (2), то – вниз. Следовательно, если не выполняется ни одно из этих условий, т.е.

,

система неподвижна.

Осталось найти силу давления на ось блока (рис. 14.9). Силу давления на ось блока R в данном случае можно найти как диагональ ромба АВСD . Так как

ÐADC = 180° – 2 ,

где b = 90°– a, то по теореме косинусов

R 2 = .

Отсюда .

Ответ :

1) если , то , ;

2) если , то , ;

3) если , то а = 0; Т = т 2 g .

Во всех случаях .

СТОП! Решите самостоятельно: В13, В15.

Задача 14.4. На тележку массой М действует горизонтальная сила F (рис. 14.10,а ). Коэффициент трения между грузом т и тележкой равен m. Определить ускорение грузов. Какой должна быть минимальная сила F 0 , чтобы груз т начал скользить по тележке?

M , т F m а) б) Рис. 14.10
а 1 = ? а 2 = ? F 0 = ?

Решение . Сначала заметим, что сила, приводящая груз т в движение, – это сила трения покоя , с которой тележка действует на груз. Максимально возможное значение этой силы равно mmg .

По третьему закону Ньютона груз действует на тележку с такой же по величине силой – (рис. 14.10,б ). Проскальзывание начинается в тот момент, когда уже достигла своего максимального значения , но система еще движется как одно тело массой т +М с ускорением . Тогда по второму закону Ньютона

Движение. Теплота Китайгородский Александр Исаакович

Наклонная плоскость

Наклонная плоскость

Крутой подъем труднее преодолеть, чем отлогий. Легче вкатить тело на высоту по наклонной плоскости, чем поднимать его по вертикали. Почему так и насколько легче? Закон сложения сил позволяет нам разобраться в этих вопросах.

На рис. 12 показана тележка на колесах, которая натяжением веревки удерживается на наклонной плоскости. Кроме тяги на тележку действуют еще две силы – вес и сила реакции опоры, действующая всегда по нормали к поверхности, вне зависимости от того, горизонтальная поверхность опоры или наклонная.

Как уже говорилось, если тело давит на опору, то опора противодействует давлению или, как говорят, создает силу реакции.

Нас интересует, в какой степени тащить тележку вверх легче по наклонной плоскости, чем поднимать вертикально.

Разложим силы так, чтобы одна была направлена вдоль, а другая – перпендикулярно к поверхности, по которой движется тело. Для того чтобы тело покоилось на наклонной плоскости, сила натяжения веревки должна уравновешивать лишь продольную составляющую. Что же касается второй составляющей, то она уравновешивается реакцией опоры.

Найти интересующую нас силу натяжения каната T можно или геометрическим построением или при помощи тригонометрии. Геометрическое построение состоит в проведении из конца вектора веса P перпендикуляра к плоскости.

На рисунке можно отыскать два подобных треугольника. Отношение длины наклонной плоскости l к высоте h равно отношению соответствующих сторон в треугольнике сил. Итак,

Чем более отлога наклонная плоскость (h /l невелико), тем, разумеется, легче тащить тело вверх.

А теперь для тех, кто знает тригонометрию: так как угол между поперечной составляющей веса и вектором веса равен углу? наклонной плоскости (это углы со взаимно перпендикулярными сторонами), то

Итак, вкатить тележку по наклонной плоскости с углом? в sin ? раз легче, чем поднять ее вертикально.

Полезно помнить значения тригонометрических функций для углов 30, 45 и 60°. Зная эти цифры для синуса (sin 30° = 1/2; sin 45° = sqrt(2)/2;*5 sin 60° = sqrt(3)/2), мы получим хорошее представление о выигрыше в силе при движении по наклонной плоскости.

Из формул видно, что при угле наклонной плоскости в 30° наши усилия составят половину веса: T = P ·(1/2). При углах 45° и 60° придется тянуть канат с силами, равными примерно 0,7 и 0,9 от веса тележки. Как видим, такие крутые наклонные плоскости мало облегчают дело.

Loading...Loading...