Зрительный анализатор человека кратко. Что такое зрительный анализатор и схема его построения

Зрительный анализатор включает:

периферический отдел: рецепторы сетчатки глаза;

проводниковый отдел: зрительный нерв;

центральный отдел: затылочная доля коры больших полушарий.

Функция зрительного анализатора : восприятие, проведение и расшифровка зрительных сигналов.

Строения глаза

Глаз состоит из глазного яблока и вспомогательного аппарата .

Вспомогательный аппарат глаза

брови - защита от пота;

ресницы - защита от пыли;

веки - механическая защита и поддержание влажности;

слезные железы - расположены у верхней части наружного края глазницы. Она выделяет слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаз. Избыток слёзной жидкости удаляется в носовую полость через слёзный канал , расположенный во внутреннем углу глазницы.

Глазное яблоко

Глазное яблоко имеет примерно сферическую форму с диаметром около 2,5 см.

Оно расположено на жировой подушке в переднем отделе глазницы.

Глаз имеет три оболочки:

белочная оболочка (склера) с прозрачной роговицей - наружная очень плотная фиброзная оболочка глаза;

сосудистая оболочка с наружной радужной оболочкой и ресничным телом - пронизана кровеносными сосудами (питание глаза) и содержит пигмент, препятствующий рассеиванию света через склеру;

сетчатая оболочка (сетчатка ) - внутренняя оболочка глазного яблока - рецепторная часть зрительного анализатора; функция: непосредственное восприятие света и передача информации в центральную нервную систему.

Коньюктива - слизистая оболочка, соединяющая глазное яблоко с кожным покровами.

Белочная оболочка (склера) - внешняя прочная оболочка глаза; внутренняя часть склеры непроницаема для сетовых лучей. Функция: защита глаза от внешних воздействий и светоизоляция;

Роговица - передняя прозрачная часть склеры; является первой линзой на пути световых лучей. Функция: механическая защита глаза и пропускание световых лучей.

Хрусталик - двояковыпуклая линза, расположенная за роговицей. Функция хрусталика: фокусировка световых лучей. Хрусталик не имеет сосудов и нервов. В нем не развиваются воспалительные процессы. В нем много белков, которые иногда могут терять свою прозрачность, что приводит к заболеванию, называемому катаракта .

Сосудистая оболочка - средняя оболочка глаза, богатая сосудами и пигментом.

Радужная оболочка - передняя пигментированная часть сосудистой оболочки; содержит пигменты меланин и липофусцин, определяющие цвет глаз.

Зрачок - круглое отверстие в радужной оболочке. Функция: регуляция светового потока, поступающего в глаз. Диаметр зрачка непроизвольно меняется с помощью гладких мышц радужной оболочки при изменении освещенности.

Передняя и задняя камеры - пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью (водянистой влагой ).

Ресничное (цилиарное) тело - часть средней (сосудистой) оболочки глаза; функция: фиксация хрусталика, обеспечение процесса аккомодации (изменение кривизны) хрусталика; продуцирование водянистой влаги камер глаза, терморегуляция.

Стекловидное тело - полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.

Сетчатка (ретина) - рецепторный аппарат глаза.

Строение сетчатки

Сетчатка образована разветвлениями окончаний зрительного нерва, который, подойдя к глазному яблоку, проходит через белочную оболочку, причем оболочка нерва сливается с белочной оболочкой глаза. Внутри глаза волокна нерва распределяются в виде тонкой сетчатой оболочки, которая выстилает задние 2/3 внутренней поверхности глазного яблока.

Сетчатка состоит из опорных клеток, образующих сетчатую структуру, откуда и произошло ее название. Световые лучи воспринимает только ее задняя часть. Сетчатая оболочка по своему развитию и по функции представляет собой часть нервной системы. Все же остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.

Сетчатая оболочка - это часть мозга, выдвинутая наружу, ближе к поверхности тела, и сохраняющая с ним связь с помощью пары зрительных нервов.

Нервные клетки образуют в сетчатке цепи, состоящие из трех нейронов (см. рис. ниже):

первые нейроны имеют дендриты в виде палочек и колбочек; эти нейроны являются конечными клетками зрительного нерва, они воспринимают зрительные раздражения и представляют собой световые рецепторы.

вторые - биполярные нейроны;

третьи - мультиполярные нейроны (ганглиозные клетки ); от них отходят аксоны, которые тянутся по дну глаза и образуют зрительный нерв.

Светочувствительные элементы сетчатки:

палочки - воспринимают яркость;

колбочки - воспринимают цвет.

Колбочки медленно возбуждаются и только ярким светом. Они способны воспринимать цвет. В сетчатке находится три вида колбочек. Первые воспринимают красный цвет, вторые - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений, глаз воспринимает различные цвета и оттенки.

Палочки и колбочки в сетчатой оболочке глаза перемешаны между собой, но в некоторых местах они расположены очень густо, в других же редко или отсутствуют совсем. На каждое нервное волокно приходится примерно 8 колбочек и около 130 палочек.

В области желтого пятна на сетчатке нет палочек - только колбочки, здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. По-этому глазное яблоко находится в непрерывном движении, так чтобы рассматриваемая часть объекта приходилась на желтое пятно. По мере удаления от желтого пятна плотность палочек увеличивается, но потом уменьшается.

При низкой освещенности в процессе видения участвуют только палочки (сумеречное видение), и глаз не различает цвета, зрение оказывается ахроматическим (бесцветным).

От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв. Место выхода из сетчатки зрительного нерва называетсядиском зрительного нерва . В области диска зрительного нерва светочувствительных элементов нет. Поэтому это место не дает зрительного ощущения и называется слепым пятном .

Мышцы глаза

глазодвигательные мышцы - три пары поперечно-полосатых скелетных мышц, которые прикрепляются к коньюктиве; осуществляют движение глазного яблока;

мышцы зрачка - гладкие мышцы радужки (круговая и радиальная), меняющие диаметр зрачка;
Круговая мышца (сжиматель) зрачка иннервируется парасимпатическими волокнами из глазодвигательного нерва, а радиальная мышца (расширитель) зрачка - волокнами симпатического нерва. Радужная оболочка, таким образом, регулирует количество света, поступающего в глаз; при сильном, ярком свете зрачок суживается и ограничивает поступление лучей, а при слабом - расширяется, давая возможность проникнуть большему количеству лучей. На диаметр зрачка влияет гормон адреналин. Когда человек находится в возбужденном состоянии (при испуге, гневе и т. д.), количество адреналина в крови увеличивается, и это вызывает расширение зрачка.
Движения мышц обоих зрачков управляются из одного центра и происходят синхронно. Поэтому оба зрачка всегда одинаково расширяются или суживаются. Даже если подействовать ярким светом на один только глаз, зрачок другого глаза тоже суживается.

мышцы хрусталика (цилиарные мышцы) - гладкие мышцы, изменяющие кривизну хрусталика (аккомодация --фокусировка изображения на сетчатке).

Проводниковый отдел

Зрительный нерв является проводником световых раздражений от глаза к зрительному центру и содержит чувствительные волокна.

Отойдя от заднего полюса глазного яблока, зрительный нерв выходит из глазницы и, войдя в полость черепа, через зрительный канал, вместе с таким же нервом другой стороны, образует перекрест (хиазму ). После перекреста зрительные нервы продолжаются в зрительных трактах . Зрительный нерв связан с ядрами промежуточного мозга, а через них - с корой больших полушарий.

Каждый зрительный нерв содержит совокупность всех отростков нервных клеток сетчатки одного глаза. В области хиазмы происходит неполный перекрест волокон, и в составе каждого зрительного тракта оказывается около 50% волокон противоположной стороны и столько же волокон своей стороны.

Центральный отдел

Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.

Импульсы от световых раздражений по зрительному нерву проходят к мозговой коре затылочной доли, где расположен зрительный центр.

Орган зрения играет важнейшую роль во взаимодействии человека с окружающей средой. С его помощью к нервным центрам поступает до 90 % информации о внешнем мире. Он обеспечивает восприятие света, цветовой гаммы и ощущение пространства. Благодаря тому, что орган зрения является парным и подвижным, зрительные образы воспринимаются объемно, т.е. не только по площади, но и по глубине.

Орган зрения включает глазное яблоко и вспомогательные органы глазного яблока. В свою очередь орган зрения – составная часть зрительного анализатора, который кроме указанных структур включает проводящий зрительный путь, подкорковые и корковые центры зрения.

Глаз имеет округлую форму, передний и задний полюсы (рис. 9.1). Глазное яблоко состоит из:

1) наружной фиброзной оболочки;

2) средней – сосудистой оболочки;

3) сетчатки;

4) ядра глаза (пере­дняя и задняя камеры, хрусталик, стекловидное тело).

Диаметр глаза примерно равен 24 мм, объем глаза у взрослого человека в среднем 7,5 см 3 .

1) Фиброзная оболочка – наружная плотная оболочка, выполняющая каркасную и защитную функции. Фиброзная оболочка подразделяется на задний отдел – склеру и прозрачный передний – роговицу.

Склера – плотная соединительно-тканая оболочка толщиной 0,3–0,4 мм в задней части, 0,6 мм вблизи роговицы. Она образована пучками коллагеновых волокон, между которыми залегают уплощенные фибробласты с небольшим количеством эластических волокон. В толще склеры в зоне соединения ее с роговицей имеется множество мелких разветвленных сообщающихся между собой полостей, образующих венозный синус склеры (шлеммов канал), через кото­рый обеспечивается отток жидкости из передней камеры глаза.К склере прикрепляются глазодвигательные мышцы.

Роговица – это прозрачная часть оболочки, которая не имеет сосудов, а по форме напоминает часовое стекло. Диаметр роговицы – 12 мм, толщина – около 1 мм. Основные свойства роговицы – прозрачность, равномерная сферичность, высокая чувствительность и высокая преломляющая способность (42 дптр). Роговица выполняет защитную и оптическую функции. Она состоит из нескольких слоев: наружного и внутрненнего эпителиальных с множеством нервных окончаний, внутренних, образованных тонкими соединительно-ткаными (коллагеновыми) пластинками, между которыми лежат уплощенные фибробласты. Эпителиоциты наружного слоя снабжены множеством микроворсинок и обильно смочены слезой. Роговица лишена кровеносных сосудов, ее питание происходит за счет диффузии из сосудов лимба и жидкости передней камеры глаза.

Рис. 9.1. Схема строения глаза:

А: 1 – анатомическая ось глазного яблока; 2 – роговица; 3 – передняя камера; 4 – задняя камера; 5 – коньюктива; 6 – склера; 7 – сосудистая оболочка; 8 – цилиарная связка; 8 – сетчатка; 9 – желтое пятно, 10 – зрительный нерв; 11 – слепое пятно; 12 – стекловидное тело, 13 – ресничатое тело; 14 – циннова связка; 15 – радужка; 16 – хрусталик; 17 – оптическая ось; Б: 1 – роговица, 2 – лимб (край роговицы), 3 – венозный синус склеры, 4 – радужно-рого-вичный угол, 5 – конъюнктива, 6 – ресничная часть сетчатки, 7 – склера, 8 – сосудистая оболочка, 9 – зубчатый край сетчатки, 10 – ресничная мышца, 11 – ресничные отростки, 12 – задняя камера глаза, 13 – радужка, 14 – задняя поверхность радужки, 15 – реснич­ный поясок, 16 – капсула хрусталика, 17 – хрусталик, 18 – сфинктер зрачка (мышца, суживающая зрачок), 19 – передняя камера глазного яблока

2) Сосудистая оболочка содержит большое количество кровеносных сосудов и пигмента. Она состоит из трех частей: собственно сосудистой оболочки, ресничного тела и радужки.

Собственно сосудистая оболочка образует большую часть сосудистой оболочки и выстилает заднюю часть склеры.

Большая часть ресничного тела – это ресничная мышца, образованная пучками миоцитов, среди которых различают продольные, циркулярные и радиальные волокна. Сокращение мышцы приводит к расслаблению волокон ресничного пояска (цинновой связки), хрусталик расправляется, округляется, вследствие этого выпуклость хрусталика и его пре­ломляющая сила увеличивается, происходит аккомодация на близлежащие предметы. Миоциты в старческом возрасте частично атрофируются, развивается соединительная ткань; это приводит к нарушению аккомодации.

Ресничное тело кпереди продолжается в радужку, которая представляет собой круглый диск с отверстием в центре (зрачок). Радужка расположена между роговицей и хрусталиком. Она отделяет переднюю камеру (ограниченную спереди роговицей) от задней (ограниченной сзади хрусталиком). Зрачковый край радужки зазубрен, латеральный периферический – ресничный край – пере­ходит в ресничное тело.

Радужка состоит из соединительной ткани с сосудами, пигментных клеток, которые определяют цвет глаз, и мышечных волокон, расположенных радиально и циркулярно, которые образуют сфинктер (суживатель) зрачка и дилататор зрачка. Различное количество и качество пигмента меланина обусловливает цвет глаз – карий, черный, (при наличии большого количества пигмента) или голубой, зеленоватый (если мало пигмента).

3) Сетчатка – внутренняя (светочувствительная) оболочка глазного яблока – на всем протяжении прилежит изнутри к сосудистой оболочке. Она состоит из двух листков: внутреннего – светочувствительного (нервная часть) и наружного – пигментного. Сетчатка делится на две части – заднюю зрительную и переднюю (ресничную и радужковую). Последняя не содержит светочувствительных клеток (фоторецепторов). Границей между ними является зубчатый край, который расположен на уровне перехода собственно сосудистой оболочки в ресничный кружок. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно, где также отсутствуют фоторецепторы). В центре диска в сетчатку входит центральная артерия сетчатки.

Зрительная часть состоит из наружной пигментной и внутренней нервной частей. Во внутреннюю часть сетчатки входят клетки с отростками в форме колбочек и палочек, которые являются светочувствительными элементами глазного яблока. Колбочки воспринимают световые лучи при ярком (дневном) свете и являются одновременно рецепторами цвета, а палочки функционируют при сумеречном освещении и играют роль рецепторов сумеречного света. Остальные нервные клетки выпол­няют связующую роль; аксоны этих клеток, соединившись в пучок, образуют нерв, который выходит из сетчатки.

Каждая палочка состоит из наружного и внутреннего сегментов. Наружный сегмент – светочувствительный – образован сдвоенными мембранными дисками, которые представляют собой складки плазматической мем­браны. Зрительный пурпур – родопсин, располагающийся в мембранах наружного сегмента, под действием света изменяется, что приводит к возникновению импульса. Наружный и внутренний сегменты связаны между собой ресничкой. Во внутреннем сегменте – множество митохондрий, рибосом, элементов эндоплазматической сети и пластинчатого комплекса Гольджи.

Палочки покрывают почти всю сетчатку за исключением «слепого» пятна. Наибольшее количество колбочек находится на расстоянии около 4 мм от диска зрительного нерва в углублении округлой формы, так называемое желтое пятно, в нем отсутствуют сосуды и оно является местом наилучшего видения глаза.

Различают три типа колбочек, каждый из которых воспринимает свет определенной длины волны. В отличие от палочек в наружном сег­менте одного типа имеется иодопсин, к оторый воспринимает красный свет. Количество колбочек в сетчатке глаза человека достигает 6–7 млн, коли­чество палочек – в 10–20 раз больше.

4) Ядро глаза состоит из камер глаза, хрусталика и стекловидного тела.

Радужка разделяет пространство между роговицей, с одной стороны, и хрусталиком с цинновой связкой и ресничным телом, с другой, на две камеры переднюю изаднюю, которые играют важную роль в циркуляции водянистой влаги внутри глаза. Водянистая влага – жидкость с очень низкой вязкостью, она содер­жит около 0,02 % белка. Водянистая влага вырабатывается капиллярами ресничных отростков и радужки. Обе камеры сообщаются между собой через зрачок. В углу передней камеры, образованном краем радужки и роговицы, по окружности располагаются выстланные эндотелием щели, через которые передняя камера сообщается с венозным синусом склеры, а последний – с системой вен, куда оттекает водянистая влага. В норме количе­ство образовавшейся водянистой влаги строго соответствует количеству оттекающей. При нарушении оттока водянистой влаги возникает повышение внутриглазного давления – глаукома. При несвоевременном лечении данное состояние может привести к слепоте.

Хрусталик – прозрачная двояковыпуклая линза диаметром около 9 мм, имеющая переднюю и заднюю поверхности, которые переходят одна в другую в области экватора. Коэффициент преломления хрусталика в поверхностных слоях равен 1,32; в центральных – 1,42. Эпителиальные клетки, распо­ложенные вблизи экватора, являются ростковыми, они делятся, уд­линяются, дифференцируются в хрусталиковые волокна и накладываются на периферические волокна позади экватора, в результате чего диаметр хрусталика увеличивается. В процессе дифференцировки ядро и органеллы исчезают, в клетке сохраняются лишь свободные рибосомы и микротрубочки. Хрусталиковые волокна дифференцируются в эмбриональном периоде из эпителиальных клеток, покрывающих заднюю поверхность образующегося хрусталика, и сохраняются в течение всей жизни человека. Волокна склеены между собой веществом, чей индекс светопреломления аналогичен таковому в волокнах хрусталика.

Хрусталик как бы подвешен на ресничном пояске (цинновой связке) между волокнами которого расположены пространства пояска, (петитов канал), сообщающиеся с камерами глаза. Волокна пояска прозрачны, они сливаются с веществом хрусталика и пере­дают ему движения ресничной мышцы. При натяжении связки (расслабление ресничной мышцы) хрусталик уплощается (установ­ка на дальнее видение), при расслаблении связки (сокращение ресничной мышцы) выпуклость хрусталика увеличивается (уста­новка на ближнее видение). Это и называется аккомодацией глаза.

Снаружи хрусталик покрыт тонкой прозрачной эластичной капсулой, к ко­торой прикрепляется ресничный поясок (циннова связка). При сокращении ресничной мышцы изменяются размеры хрусталика и его преломляющая способность.Хрусталик обеспечивает аккомодацию глазного яблока, преломляя световые лучи силой в 20 диоптрий.

Стекловидное тело заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. Оно представляет собой аморфное межклеточное вещество желеобразной консистенции, которое не имеет сосудов и нервов и покрыто оболочкой, его индекс светопреломления – 1,3. Стекловидное тело состоит из гигроскопического белка витреина и гиалуроновой кислоты. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

Вспомогательные органы глаза. К вспомогательным органам глаза относятся мышцы глазного яблока, фасции глазницы, веки, брови, слезный аппарат, жировое тело, конъюнктива, влагалище глазного яблока. Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Мышцы действуют таким образом, что оба глаза поворачиваются согласованно и направлены в одну и ту же точку (рис. 9.2).

Рис. 9.2. Мышцы глазного яблока (глазодвигательные мышцы):

А – вид спереди, Б – вид сверху; 1 – верхняя прямая мышца, 2 – блок, 3 – верхняя косая мышца, 4 – медиальная прямая мышца, 5 – нижняя косая мышца, б – нижняя прямая мышца, 7 – латеральная прямая мышца, 8 – зрительный нерв, 9 – перекрест зрительных нервов

Глазница, в которой находится глазное яблоко, состоит из надкостницы глазницы. Между влагалищем и надкостницей глазницы находится жировое тело глазницы, которое выполняет роль эластичной подушки для глазного яблока.

Веки (верхнее и нижнее) представляют собой образования, которые лежат впереди глазного яблока и прикрывают его сверху и снизу, а при смыкании полностью его скрывают. Пространство между краями век называется глазной щелью, вдоль переднего края век расположены ресницы. Основу века составляет хрящ, который сверху покрыт кожей. Веки уменьшают или перекрывают доступ светового потока. Брови и ресницы – это короткие щетинковые волосы. При мигании ресницы задерживают крупные частицы пыли, а брови способствуют отведению пота в латеральном и медиальном направлении от глазного яблока.

Слезный аппарат состоит из слезной железы с выводными протоками и слезоотводящих путей (рис. 9.3). Слезная железа расположена в верхнелатеральном углу глазницы. Она выделяет слезу, состоящую в основном из воды, в которой содержится около 1,5 % NaCl, 0,5 % альбумина и слизь, а также в слезе имеется лизоцим, обладающий выраженным бактерицидным действием.

Кроме того, слеза обеспечивает смачивание роговицы – препятствует ее воспалению, удаляет с ее поверхности частицы пыли и участвует в обеспечении ее питания. Движе­нию слезы способствуют мигательные движения век. Затем слеза по капиллярной щели около края век оттекает в слезное озеро. В этом месте берут начало слезные канальца, которые открываются в слезный мешок. После­дний находится в одноименной ямке в нижнемедиальном углу глазницы. Книзу он переходит в довольно широкий носослезный канал, по которому слезная жид­кость попадает в полость носа.

Зрительное восприятие

Формирование изображения в глазу происходит при участии оптических систем (роговицы и хрусталика), дающих перевернутое и уменьшенное изображение объекта на поверхности сетчатки. Кора головного мозга осуществляет еще один поворот зрительного образа, благодаря чему мы видим различные объекты окружающего мира в реальном виде.

Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика. При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.

Преломляющую силу оптической системы глаза выражают в диоптриях – (дптр). Преломляющая сила глаза человека составляет 59 дптр при рассмотрении дале­ких и 72 дптр – при рассмотрении близких предметов.

Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия, и астигматизм (рис. 9.4). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вог­нутые линзы с отрицательными диоптриями.

Рис. 9.4. Ход лучей света в глазу:

а – при нормальном зрении, б – при близорукости, в – при дальнозоркости, г – при астигматизме; 1 – коррекция двояковогнутой линзой для исправления дефектов близорукости, 2 – двояковыпуклой – дальнозоркости, 3 – цилиндрической – астигматизма

При дальнозоркости глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями. Астигматизм – различное преломление лучей света в двух главных меридианах.

Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока. Исправить это нарушение рефракции можно с помощью двояковыпуклых линз.

Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только зрение одновременно двумя глазами дает восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.

Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 минуте, или 1 единице.

Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.

Поле зрения – это пространство, которое воспринимается одним глазом при неподвижном его состоянии. Изменение поля зрения может быть ранним признаком некоторых заболеваний глаз и головного мозга.

Механизм фоторецепции основан на поэтапном превращении зрительного пигмента родопсина под действием квантов света. Последние поглощаются группой атомов (хромофоры) специализированных молекул – хромолипопротеинов. В каче­стве хромофора, который определяет степень поглощения света в зрительных пигментах, выступают альдегиды спиртов витамина А, или ретиналь. Ретиналь в норме (в темноте) связывается с бесцветным белком опсином, образуя при этом зрительный пигмент родопсин. При поглощении фотона цис-ретиналь переходит в полную трансформу (изменяет конформацию) и отсоединяется от опсина, при этом в фоторецепторе запускается электрический импульс, который направляется в головной мозг. При этом молекула теряет цвет, и этот процесс называют выцветанием. После прекращения воздействия света родопсин тотчас же ресинтезируется. В полной темноте необходимо около 30 минут, чтобы все палочки адап­тировались и глаза приобрели максимальную чувствительность (весь цис-ретиналь соединился с опсином, вновь образуя родопсин). Этот процесс беспрерывный и лежит в основе темновой адаптации.

От каждой фоторецепторной клетки отходит тонкий отросток, заканчивающийся в наружном сетчатом слое утолщением, которое образует синапс с отростками биполярных нейронов.

Ассоциативные нейроны , расположенные в сетчатке, передают возбуждение от фоторецепторных клеток к крупным оптикоганглионарным невроцитам , аксоны которых (500 тыс – 1 млн) и образуют зрительный нерв, который выходит из глазницы через канал зрительного нерва. На нижней поверхности мозга образуется перекрест зрительных нервов. Информация от латеральных частей сетчатки, не перекрещиваясь, направляется в зрительный тракт, а от медиальных – перекрещивается. Затем импульсы проводятся к подкорковым центрам зрения, которые расположены в среднем и промежуточном мозге: верхние холмики среднего мозга обеспечивают ответную реакцию на неожиданные зри­тельные раздражители; задние ядра таламуса (зрительного бугра) промежуточного мозга обеспечивают бессознательную оценку зрительной информации; от латеральных коленчатых тел промежуточного мозга по зрительной лучистости импульсы направляются к корковому центру зрения. Он расположен в шпорной борозде затылочной доли и обеспечивает сознательную оценку поступившей информации (рис. 9.5).

  • Инж. геол. изыск.проводят для сбора данных характерных геологическое строение местности по к-ой прокладывается дорога и ее гидрогеологические условия

  • Глаза - орган зрения - можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с помощью зрения, например о форме, размерах, цвете предметов, расстоянии до них и др. Зрительный анализатор контролирует двигательную и трудовую деятельность человека; благодаря зрению мы можем по книгам и экранам компьютеров изучать опыт, накопленный человечеством.

    Орган зрения состоит из глазного яблока и вспомогательного аппарата. Вспомогательный аппарат - это брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды

    Брови и ресницы защищают глаза от пыли. Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2-5 движений веками в 1 мин). Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли. Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость. Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу.

    Глазное яблоко располагается в углублении черепа - глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной - фиброзной, средней - сосудистой и внутренней - сетчатой. Фиброзная оболочка подразделяется на заднюю непрозрачную часть - белочную оболочку, или склеру, и переднюю прозрачную - роговицу. Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой. Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз. В центре радужной оболочки находится небольшое отверстие - зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света.

    Собственно сосудистая оболочка пронизана густой сетью кровеносных сосудов, питающих глазное яблоко. Изнутри к сосудистой оболочке прилежит слой пигментных клеток, поглощающих свет, поэтому внутри глазного яблока свет не рассеивается, не отражается.

    Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик. Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке - внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета). Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном.

    Внутри глаз заполнен прозрачным и бесцветным стекловидным телом.

    Восприятие зрительных раздражений . Свет попадает в глазное яблоко через зрачок. Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно.

    В рецепторах сетчатки происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг через ядра среднего мозга (верхние бугры четверохолмия) и промежуточного мозга (зрительные ядра таламуса) - в зрительную зону коры больших полушарий, расположенную в затылочной области. Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате этого складывается представление о предмете.

    Нарушения зрения. Зрение людей меняется с возрастом, так как хрусталик теряет эластичность, способность менять свою кривизну. В этом случае изображение близко расположенных предметов расплывается - развивается дальнозоркость. Другой дефект зрения - близорукость, когда люди, наоборот, плохо видят удаленные предметы; она развивается после длительного напряжения, неправильного освещения. Близорукость часто возникает у детей школьного возраста из-за неправильного режима труда, плохой освещенности рабочего места. При близорукости изображение предмета фокусируется перед сетчаткой, а при дальнозоркости - позади сетчатки и поэтому воспринимается как расплывчатое. Причиной этих дефектов зрения могут быть и врожденные изменения глазного яблока.

    Близорукость и дальнозоркость исправляются специально подобранными очками или линзами.

    • Зрительный анализатор человека обладает потрясающей чувствительностью. Так, мы можем различить освещенное изнутри отверстие в стене диаметром всего 0,003 мм. Тренированный человек (причем у женщин это получается гораздо лучше) может различать сотни тысяч цветовых оттенков. Зрительному анализатору достаточно всего 0,05 секунды для распознавания объекта, который попал в поле зрения.

    Проверьте свои знания

    1. Что такое анализатор?
    2. Как устроен анализатор?
    3. Назовите функции вспомогательного аппарата глаза.
    4. Как устроено глазное яблоко?
    5. Какие функции выполняют зрачок и хрусталик?
    6. Где располагаются палочки и колбочки, в чем заключаются их функции?
    7. Как работает зрительный анализатор?
    8. Что такое слепое пятно?
    9. Как возникают близорукость и дальнозоркость?
    10. Каковы причины нарушения зрения?

    Подумайте

    Почему говорят, что глаз смотрит, а мозг видит?

    Орган зрения образован глазным яблоком и вспомогательным аппаратом. Глазное яблоко может двигаться благодаря шести глазодвигательным мышцам. Зрачок- небольшое отверстие, через которое в глаз попадает свет. Роговица и хрусталик являются преломляющим аппаратом глаза. Рецепторы (светочувствительные клетки - палочки, колбочки) находятся в сетчатке.

    - один из самых важных анализаторов, т.к. дает более 90% сенсорной информации.

    Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов, затем информация последовательно обрабатывается в подкорковых и корковых зрительных центрах, в результате чего возникает зрительный образ, который благодаря взаимодействию зрительного анализатора с другими анализаторами правильно отражает объективную реальность.

    Зрительныйанализатор- совокупность структур, воспринимающих световое излучение (электромагнитные волны с длиной 390-670нм) и формирующих зрительные ощущения.

    Он позволяет различать освещенность предметов, их цвет, форму, размеры, характеристики передвижения, пространственную ориентацию в окружающем мире.

    Орган зрения состоит из глазного яблока, зрительного нерва и вспомогательных органов глаза. Глаз состоит из оптической и фоторецепторной частей и имеет три оболочки: белочную, сосудистую и сетчатую.

    Оптическая система глаза обеспечивает светопреломляющую функцию и состоит из светопреломляющих (рефракционных) сред (преломление – с целью фокусировки лучей в одной точке на сетчатке): Прозрачной роговицы (сильная рефракционная способность);

    жидкость передней и задней камер;

    хрусталика, окруженного прозрачной сумкой , реализует аккомодацию- изменение рефракции;

    стекловидного тела, занимающего большую часть глазного яблока (слабая рефракц. способность).

    Глазное яблоко имеет шаровидную форму. В нем выделяют передний и задний полюс. Передний полюс - наиболее выступающая точка роговицы, задний полюс расположен латерально от места выхода зрительного нерва. Соединяющая оба полюса условная линия – наружная ось глаза, она равна 24мм и находится в плоскости меридиана глазного яблока. Глазное яблоко состоит из ядра (хрусталик, стекловидное тело), покрытого тремя оболочками: наружной(фиброзная или белочная), средней (сосудистой),внутренней(сетчатой).

    Роговица – прозрачная выпуклая пластинка блюдцеобразной формы, лишена кровеносных сосудов. Различное количество и качества пигмента меланина на пигментном слое радужной оболочки обуславливает цвет глаза - карий, черный (при наличии большого количества меланина), голубой и зеленоватый, если его мало. У альбиносов нет пигмента вообще, у них радужная оболочка не окрашена, сквозь нее просвечивают кровеносные сосуды и поэтому радужка кажется красной.

    Хрусталик – прозрачная двояковыпуклая линза (т.е. увеличительное стекло) диаметром около 9мм, имеющая переднюю и заднюю поверхности. Передняя поверхность более плоская. Линия, соединяющая наиболее выпуклые точки обеих поверхностей, называется осью хрусталика. Хрусталик как бы подвешен на ресничном пояске, т.е. на цинновой связке.

    Кривизна хрусталика зависит от цилиарной мышцы, она напрягается. При чтении, при смотрении вдаль эта мышца расслабляется, хрусталик становится плоским. При смотрении вдаль – менее выпуклый хрусталик.

    Т.о. при натяжении связки, т.е. расслаблении ресничной мышцы хрусталик уплощается(установка на дальнее видение), при расслаблении связки, т.е. при сокращении ресничной мышцы, выпуклость хрусталика увеличивается (установка на ближнее видение) Это и называется аккомодацией.

    Хрусталик имеет форму двояковыпуклой линзы. Его функция заключается в преломлении проходящих через него лучей света и фокусировке изображения на сетчатке.

    Стекловидное тело – прозрачный гель, состоящий из внеклеточной жидкости с коллагеном и гиалуроновой кислотой в коллоидном растворе. Заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

    В задней части глаза его внутренняя поверхность выстлана сетчаткой. Промежуток между сетчаткой и плотной склерой, окружающее глазное яблоко, заполнен сетью кровеносных сосудов – сосудистой оболочкой. У заднего полюса глаза человека в сетчатке есть небольшое углубление - центральная ямка – место, где острота зрения при дневном освещении максимальна.

    Сетчатка представляет собой внутреннюю (светочувствительная) оболочку глазного яблока, на всем протяжении прилежит изнутри к сосудистой оболочке.

    Состоит из 2-х листков: внутреннего – светочувствительного, наружного пигментного. Сетчатка делится на две части: заднюю - зрительную и переднюю- (ресничную) которая не содержит фоторецепторов.

    Место выхода зрительного нерва из сетчатки - называют диском зрительного нерва или слепым пятном . Оно не содержит фоторецепторов, нечувствительно к свету. Со всей сетчатки к зрительному пятну сходятся нервные волокна, образующие зрительный нерв.

    Латеральнее, на расстоянии около 4 мм от слепого пятна выделяют особый участок наилучшего видения – желтое пятно (имеются каротиноиды).

    В области желтого пятна отсутствуют кровеносные сосуды. В его центре находится так называемая центральная ямка, которая содержит колбочки.

    Она является местом наилучшего видения глаза. По мере удаления от центральной ямки количество колбочек уменьшается, а палочек увеличивается

    В сетчатке различают 10 слоев.

    Рассмотрим основные слои: наружный - фоторецепторный(слой палочек и колбочек);

    пигментный, самый внутренний, плотно примыкающий непосредственно к сосудистой оболочке;

    слой биполярных и ганглиозных (аксоны составляют зрительный нерв) клеток. Над слоем ганглиозных клеток находятся их нервные волокна, которые, собираясь вместе, образуют зрительный нерв.

    Световые лучи проходят через все эти слои.

    Восприятие света осуществляется с участием фоторецепторов, которые относятся ко вторичночувствующим рецепторам. Это означает, что они представляют собой специализированные клетки, передающие информацию о квантах света на нейроны сетчатки, вначале на биполярные нейроны, затем на ганглиозные клетки, информация затем поступает на нейроны подкорковых (таламус и передние бугры четверохолмия) и корковые центры (первичное проекционное поле 17, вторичные проекционные поля 18 19) зрения. Кроме того, в процессах передачи и переработке информации в сетчатке участвуют горизонтальные и амокриновые клетки.

    Все нейроны сетчатки образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому ее называют частью мозга, вынесенной на периферию.

    Рецепторный отдел зрительного анализатора состоит из фоторецепторных клеток: палочек и колбочек. В сетчатке каждого глаза человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно.

    Центральная ямка сетчатки содержит только колбочки. По направлению от центра к периферии сетчатки их число уменьшается, а число палочек возрастает. Колбочковый аппарат сетчатки функционирует в условиях больших освещенностей, они обеспечивают дневное и цветовое зрение; палочковый аппарат ответственен за сумеречное зрение. Колбочки воспринимают цвет, палочки – свет.

    В фоторецепторных клетках содержатся светочувствительные пигменты: в палочках – родопсин, в колбочках – йодопсин.

    Поражение колбочек вызывает светобоязнь: человек видит при слабом свете, но слепнет при ярком. Отсутствие одного из видов колбочек приводит к нарушению цветоощущения, т.е к дальтонизму. Нарушение функции палочек, возникающее при недостатке в пище витамина А вызывает расстройства сумеречного зрения- куриную слепоту: человек слепнет в сумерках, но днем видит хорошо.

    Совокупность фоторецепторов, посылающих свои сигналы к одной ганглиозной клетке, образует ее рецептивное поле.

    Цветовое зрение – способность системы зрения реагировать на изменение длины световой волны с формированием цветоощущения.

    Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки, где находятся палочки, не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет. Поле зрения – это пространство, которое видит один глаз при неподвижном взоре.

    Нейроны сетчатки.

    Фоторецепторы сетчатки синаптически связаны с биполярными нейронами.

    Биполярные нейроны – первый нейрон проводникового отдела зрительного анализатора. При действии света уменьшается выделение медиатора (глутамат) из пресинаптического окончания фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки,аксоны которых являются волокнами зрительного нерва. Передача сигнала с фоторецепторов на биполярный нейрон, так и от него на ганглиозную клетку происходит безимпульсным путем. Биполярный нейрон не генерирует импульсов, в виду предельно малого расстояния, на который он передает сигнал.

    Аксоны ганглиозных клеток образуют зрительный нерв. Импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке.

    Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют ее рецептивное поле этой клетки.

    Т.О. каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. В центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной карликовой биполярной клеткой, с которой соединена одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, резко уменьшает световую чувствительность.

    Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные) и между биполярными и ганглиозными клетками (амакриновые клетки). Горизонтальные(звездчатые) и амакринные клетки играют важную роль в процессах анализа и синтеза в нейронах сетчатки. На одну ганглиозную клетку конвергируют до сотни биполярных клеток и рецепторов.

    ИЗ сетчатки (биполярные клетки предают сигнализацию на ганглиозные клетки сетчатки, аксоны которых идут в составе правого и левого зрительных нервов) зрительная информация по волокнам зрительного нерва (2-ая пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест или хиазма. Здесь часть волокон каждого зрительного нерва переходит на противоположную сторону от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие мозга информацией от обоих глаз. В затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левых половин сетчаток.

    После зрительного перекреста зрительные нервы называю ЗРИТЕЛЬНЫМИ ТРАКТАМИ. Они проецируются в ряд мозговых структур. В каждом зрительном тракте содержатся нервные волокна, идущие от внутреннего региона сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. После перекреста волокна зрительного тракта направляются к наружным коленчатым телам таламуса , где импульсы переключаются на нейроны, аксоны которых направляются к коре большого мозга в первичную проекционную область зрительной зоны коры(стриарная кора или 17-ое поле по Бродману), затем во вторичную проекционную зону(поле18 и 19, престиарная кора), а в затем – в ассоциативные зоны коры. Корковый отдел зрительного анализатора расположен в затылочной доле (17,18,10-е поля по Бродману). Первичная проекционная область (17-е поле) осуществляет специализированную, но более сложную, чем в сетчатке и в наружных коленчатых телах, переработку информацию. В каждом участке коры сконцентрированы нейроны, которые образуют функциональную колонку. Часть волокон от ганглиозных клеток идут к нейронам верхних бугорков и крыше среднего мозга, в претектальную область и подушку в таламусе (из подушки передается на область 18-ого и 19-ого полей коры).

    Претектальная область ответственна за регуляции диаметра зрачка, а передние бугры четверохолмия связаны с глазодвигательными центрами и высшими отделами зрительной системы. Нейроны передних бугров обеспечивают реализацию ориентировачных(сторожевых) зрительных рефлексов. Из передних бугров импульсы идут в ядра глазодвигательного нерва, иннервирующие мышцы глаза, ресничную мышцу и мышцу, суживающую зрачок. Благодаря этому, в ответ на попадание световых волн в глаз зрачок суживается., глазные яблоки поворачиваются в направлении пучка света.

    Часть информации от сетчатки по зрительному тракту поступает к супрахиазматическим ядрам гипоталамуса, обеспечивая реализацию околосуточных биоритмов.

    Цветовое зрение.

    Большинство людей способно различать основные цвета и их многочисленные оттенки. Это объясняется воздействием на фоторецепторы различных по длине волны электромагнитных колебаний.

    Цветовое зрение – способность зрительного анализатора воспринимать световые волны различной длины. Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки(воспринимают в синем, зеленом, красном диапазоне). По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки,где находятся палочки не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет.

    Человек, имеющий все три вида колбочек(красный, зеленый, синий) , т.е. трихромат, обладает нормальным цветовосприятием. Отсутствие одного из типа колбочек приводит к нарушению цветоощущения. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения, мы не различаем цвет.

    Дальтонизм выражается в выпадении восприятия одного из компонентов трехцветного зрения. Возникновение его связывают с отсутствием определенных генов в половой непарной у мужчин Х хромосоме. (таблицы Рабкина- полихроматические таблицы). Ахромазия – это полная цветовая слепота, возникающая вследствие поражения колбочкового аппарата сетчатки. При этом все предметы видятся человеком лишь в разных оттенка серого цвета.

    Протанопия « краснослепые»- не воспринимают красного цвета, сине-голубые лучи кажутся бесцветными. Дейтеранопия – « зеленослепые» - не отличают зеленых цветов от темно- красных и голубых; Тртанопия –фиолетовослепые, не воспринимают синего и фиолетового цвета.

    Бинокулярное зрение – это одновременное видение предметов двумя глазами, которое дает более выраженное ощущение глубины пространства по сравнению с монокулярным зрением (т.е. зрением одним глазом). Обусловлено симметричным расположением глаз.

    Аккомодация – настройка оптического аппарата глаза на определенное расстояние, в результате которой изображение предмета фокусируется на сетчатке.

    Аккомодация – приспособление глаза к ясному видению объектов, удаленных на разном расстоянии от глаза. Именно это свойство глаза позволяет одинаково хорошо видеть предметы, находящиеся вблизи или вдали. У человека аккомодация осуществляется за счет изменения кривизны хрусталика - при рассмотрении далеких предметов кривизна уменьшается до минимума, а при рассмотрении близко расположенных предметов – его кривизна увеличивается (выпуклый).

    Аномалии рефракции.

    Отсутствие необходимого фокусирование изображения на сетчатке глаза мешает нормальному видению.

    Миопия (близорукость ) - это вид нарушения рефракции, при котором лучи от предмета после прохождения через светопреломляющий аппарат фокусируются не на сетчатке, а впереди ней - в стекловидном теле, т.е. главный фокус находится перед сетчаткой вследствие увеличения продольной оси. Продольная ось глаза слишком длинная. В этом случае у человека нарушено восприятие далеких предметов. Коррекция такого нарушения проводится с помощью с двояковогнутыми линзами, которые отодвинут сфокусированные изображение на сетчатке.

    При гиперметропии (дальнозоркость) - лучи от далеко расположенных предметов в силу слабой преломляющей способности глаза или малой длины глазного яблока фокусируются за сетчаткой, т.е. главный фокус находится за сетчаткой вследствие короткой продольной оси глаза. В дальнозорком глазу продольная ось глаза укорочена. Этот недостаток рефракции может быть компенсирован увеличением выпуклости хрусталика. Поэтому дальнозоркий человек напрягает аккомодационную мышцу, рассматривая не только близкие, но и далекие объекты.

    Астигматизм (неодинаковое преломление лучей в разных направлениях) – это такой вид нарушения рефракции, при котором отсутствует возможность схождения лучей в одной точке сетчатки, вследствие различной кривизны роговицы на разных ее участках (в различных плоскостях), в результате чего главный фокус в одном месте может попадать на сетчатку, в другом находиться перед ней или за ней, что искажает воспринимаемое изображение.

    Дефекты оптической системы глаза компенсируются в совмещении главного фокуса преломляющих сред глаза сетчаткой.

    В клинической практике используют очковые линзы: при миопии – двояковогнутые (рассеивающие) линзы; при гиперметропии – двояковыпуклые (собирательные) линзы; при астигматизме – цилиндрические линзы с различной преломляющей силой в разных их участках.

    Аберрация – искажение изображения на сетчатке, вызванное особенностями преломляющих свойств глаза для световых волн различной длины (дифракционная, сферическая, хроматическая).

    Сферическая аберрация - неодинаковое преломление лучей в центральном и периферическом участках роговицы и хрусталика, что введет к рассеиванию лучей и резкому изображению.

    Острота зрения – способность видеть две максимально близко расположенные точки как различные, т.е. наименьший угол зрения, при котором глаз способен видеть две точки отдельно. Угол между падениями лучей = 1(секунда). В практической медицине остроту зрения обозначают в относительных единицах. При нормальном зрении острота зрение = 1. Острота зрения зависит от количества возбудимых клеток.

    Слуховой анализатор

    - это совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Звуковые сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга.

    У человека слуховой анализатор представлен периферическим отделом (наружное, среднее, внутреннее ухо), проводниковым отделом, корковым (височная слуховая кора)

    Бинауральный слух – способность слышать одновременно двумя ушами и определять локализацию источника звука.

    Звук – колебательные движения частиц упругих тел, распространяющиеся в виде волн в самых различных средах включая, воздушную, и воспринимающиеся ухом. Звуковые волны характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Ухо человека различает звуковые волны с частотой от 20 до 20000 Гц. Звуковые волны, имеющие гармонические колебания называют тоном. Звук, состоящий из не связанных между собой частот – шум. При большой частоте звуковых волн тон высокий, при малой – низкий.

    Звуки разговорной речи имеют частоту 200- 1000Гц. Малые частоты составляют басовый певческий голос, высокие частоты – сопрано.

    Единицей измерения громкости звука является децибел. Гармоническое сочетание звуковых волн формирует –тембр звука. По тембру можно различать звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

    Периферическая часть у человека морфологически объединена с периферической частью вестибулярного анализатора и поэтому называют орган слуха и равновесия.

    Наружное ухо представляет собой звукоулавливающий аппарат. Оно состоит из ушной раковины и наружного слухового прохода, который отделяется барабанной перепонкой от среднего.

    Ушная раковина обеспечивает улавливание звуков, их концентрацию в направлении наружного слухового прохода и усиление их интенсивности.

    Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющая наружное ухо от барабанной полости или среднего уха. Колеблется при действии звуковых волн.

    Наружный слуховой проход и среднее ухо разделены барабанной перепонкой.

    С физиологической точки зрения – слаборастяжимая мембрана. Назначение его- передавать дошедшие до нее по наружному слуховому проходу звуковые волны, точно воспроизводя их силу и частоту колебаний.

    Среднее ухо

    состоит из барабанной полости (заполненная воздухом), в которой расположены три слуховые косточки: молоточек, наковальня, стремечко.

    Рукоятка молоточка сращена с барабанной перепонкой, другая его часть имеет сочленение с наковальней, которая воздействует на стремечко, передающее колебание на мембрану овального окна. К стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Площадь овального окна в 22 раз меньше барабанной перепонки, во столько же раз усиливает его давление на мембрану овального окна. Даже слабые волны, действующие на барабанную перепонку,способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям овального окна жидкости в улитке.

    В полости среднего уха давление равно атмосферному. Это достигается благодаря наличию евстахиевой трубы, соединяющей барабанную полость с глоткой. При глотании евстахиева труба открывается, и давление в среднем ухе уравнивается с атмосферным. Это важно при резком перепаде давления- при взлете и посадке самолета, в скоростном лифте и т. Своевременное раскрытие евстахиевой трубы способствует выравниванию давления, снимает неприятные ощущения и предупреждает разрыв барабанной перепонки.

    Внутреннее ухо.

    Содержит рецепторный аппарат 2-х анализаторов: вестибулярного (преддверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом. Внутреннее ухо расположено в пирамиде височной кости.

    Во внутреннем ухе находится улитка , содержащая слуховые рецепторы. Улитка - спирально закрученный костный канал, имеющий 2,5 завитка, почти до самого конца улитки, костный канал разделен 2-мя перепонками: более тонкой – преддверной (вестибулярной) мембраной (мембраной Рейснера) и плотной и упругой - основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеются овальное отверстие улитки – геликотрема. Вестибулярная и основная мембрана разделяют костный канал улитки на 3 хода: верхний, средний, нижний. Верхний канал улитки соединяется с нижним каналом (барабанная лестница) Верхний и нижний каналы улитки заполнены перилимфой. Между ними находится средний канал, полость этого канала не сообщается с полостью других каналов и заполнена эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – спиральный (кортиев) орган, содержащий рецепторные волосковые клетки. Над волосками рецепторных клеток располагается текториальная мембрана. При прикосновении к ней (в результате колебаний основной мембраны)волоски деформируются и это приводит к возникновению рецепторного потенциала. Эти клетки трансформируют механические колебания в электрические потенциалы.

    Звуковые волны вызывают колебания барабанной перепонки, которые через систему слуховых косточек среднего уха и мембрану овального окна передаются на перилимфу вестибулярной и барабанной лестниц. Это приводит к колебаниям эндолимфы и определенных участков основной мембраны. Звуки высокой частоты вызывают колебание мембраны, расположенных ближе к основанию улитки. В рецепторных клетках возникает рецепторный потенциал, под влиянием которого в окончаниях волокон слухового нерва генерируются ПД, передающиеся далее по проводящим путям.

    Т.о.восприятие звука осуществляется с участием фонорецепторов. Их возбуждение под влиянием звуковой волны приводит к генерации рецепторного потенциала, который вызывает возбуждение дендритов биполярного нейрона спирального ганглия.

    Рассмотрим, каким образом осуществляется кодирование частоты и сила звук?

    Впервые 1863г Г.Гельмгольц пытался дать объяснение процессам кодирования частоты звукового сигнала во внутреннем ухе. Он сформулировал резонансную теорию слуха, в основе которого лежит так называемый принцип места.

    Согласно Гельмгольцу, поперечные волокна базилярный мембраны отвечают на звуки неодинаковой частоты по принципу резонанса. Базилярная мембрана может действовать как набор поперечно натянутых эластичных резонирующих полос, подобно струнам рояля(самые короткие из них в узкой части близ основания улитки резонируют в ответ на высокие частоты, а те, что лежат ближе к вершине, в расширенной части базилярной мембраны,- на самые низкие частоты). Соответственно этим участкам возбуждаются и фонорецепторы.

    Однако 50-60г20 века исходные предпосылки резонансной теории Гельмгольца были отвергнуты Г.Бекеши. Не отвергая исходный принцип места, Бекеши сформулировал теорию бегущей волны, согласно которой при колебаниях мембраны волны бегут от ее основания к вершине. Согласно Бекеши, бегущая волна имеет наибольшую амплитуду на строго определенном участке мембраны в зависимости от частоты.

    При действии тонов определенной частоты колеблется не одно волокно основной мембраны(как предполагал Гельмгольц), а целый участок этой мембраны. Резонирующим субстратом служит не волокно основной мембраны, а столб жидкости определенной длины: чем выше звук, тем меньше длина колеблющегося столба жидкости в каналах улитки и тем ближе к основанию улитки и овальному окну максимальная амплитуда колебания и наоборот.

    При колебаниях жидкости в каналах улитки реагируют не отдельные волокна основной мембраны, а большие или меньшие ее участки, и следовательно, возбуждаются разное количество рецепторных клеток, расположенных на мембране.

    Ощущение звука возникает и тогда, когда колеблющийся предмет, например камертон, помещен непосредственно на череп, в этом случае основная часть энергии передается костям последнего (костная проводимость). Для возбуждения рецепторов внутреннего уха необходимо движение жидкости типа вызываемого колебаниями стремени при распространении звука через воздушную среду. Звук,передаваемый через кости черепа вызывает такое движение двумя путями: во – первых, волны сжатия и разрежения,проходя по черепу,вытесняют жидкость из объемистого вестибулярного лабиринта в улитку, а затем обратно (компрессионная теория). Во – вторых, масса тимпанально- косточкового аппарата и связанная с ней инерция приводят к отставанию его колебаний от свойственных костям черепа. В результате стремя движется относительно каменистой кости, возбуждая внутреннее ухо(массоинерционная теория).

    Проводниковый отдел слухового анализатора начинается с периферического биполярного нейрона, расположенного в спиральном ганглии улитки. Волокна слухового нерва заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело таламуса, где опять происходит переключение на третий нейрон, от которого информация поступает в кору. Корковый отдел слухового анализатора расположен в верхней части височной извилины большого мозга (поля 41, 42 по Бордману) – это высший акустический центр, где совершается корковый анализ звуковой информации.

    Наряду с восходящими путями есть и нисходящие, обеспечивающие контроль высших акустических центров над получением и обработкой информации в периферическом и проводниковом отделах слухового анализатора.

    Эти пути начинаются от клеток слуховой коры, переключаются последовательно в медиальных коленчатых телах, задних буграх четверохолмия, верхнеоливарном комплексе, от которого идет оливокохлеарный пучок Расмуссена, достигающий волосковых клеток улитки.

    Кроме этого имеются эфферентные волокна, идущие от первичной слуховой зоны т.е. от височной области, к структурам к экстрапирамидной двигательной системы (базальным ганглиям, ограде, верхним буграм четверохолмия, красному ядру, черной субстанции, некоторым ядрам таламуса, РФ ствола мозга) и пирамидной системы.

    Эти данные указывают на участие слуховой сенсорной системы в регуляции двигательной активности человека.

    Эхолокация- вид акустической ориентации, характерно для животных, у которых функции зрительного анализатора ограничены или полностью исключаются. У них имеются специальные органы – биосонары для генерации звука. У летучих мышей – это лобный выступ- мелон.

    У слепых людей имеется аналог эхолокационной способности животных. В основе его лежит чувство препятствия. Она основана на том, что у слепого человека очень обострен слух. Поэтому он подсознательно воспринимает звуки, отражающиеся от предметов, которые сопутствуют его движению. При закрытых ушах эта способность у них пропадает.

    Методы исследования слухового анализатора.

    Речевая аудиометрия предназначена для исследования чувствительности слухового анализатора(остроты слуха) шепотной речью- исследуемый находится на расстоянии 6 м, повернувшись к исследователю открытым ухом, он должен повторять слова, произносимые исследователем шепотом. При нормальной остроте слуха шепотная речь воспринимается на расстоянии 6-12м.

    Камертональная аудиометрия.

    (проба Ринне и проба Вебера) предназначена для сравнительной оценки воздушной и костной проводимости звука путем восприятия звучащего камертона. У здорового человека воздушная проводимость выше костной.

    В пробе Ринне ножку звучащего камертона устанавливают на сосцевидном отростке. По окончанию восприятия звука бранши камертона подносят к звуковому проходу – здоровый человек продолжает воспринимать звучание камерт она. У человека при использовании С128время воздушной проводимости 75с,а костной-35.

    Обонятельный анализатор.

    Обонятельный анализатор позволяет определять в присутствии в воздухе пахучих веществ. Он способствует ориентации организма в окружающей среде и совместно с другими анализаторами формированию ряда сложных форм поведение (пищевого, оборонительного, полового).

    Поверхность слизистой носа увеличен за счет носовых раковин- гребней, выступающих с боков в просвет носовой полости. Обонятельная область, содержащая большинство сенсорных клеток, ограничена здесь верхней носовой раковиной.

    Рецепторы обонятельной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути, имеет толщину 100-150мкм и содержит рецепторные клетки, расположенные между опорными клетками. На поверхности каждой обонятельной клетки имеется сферическое утолщение – обонятельная булава, из которой выступает по 6-12 тончайших волосков (ресничек), в мембранах которых находятся специфические белки – рецепторы. Эти реснички не способны активно двигаться, т.к. погружены в слой слизи, покрывающий обонятельный эпителий. Пахучие вещества, приносимые вдыхаемым воздухом, вступают контакт с их мембраной, что приводит к формированию рецепторного потенциала в дендрите обонятельного нейрона, а затем возникновению в нем ПД. Обонятельные реснички погружены в жидкую среду, вырабатываемую обонятельными (боуменовы) железами. Во всей слизистой находятся еще свободные окончания тройничного нерва, некоторые реагируют на запах.

    В глотке обонятельные стимулы способны возбуждать волокна языкоглоточного и блуждающего нервов.

    Обонятельный рецептор – это первичная биполярная сенсорная клетка, от которой отходят два отростка: сверху- дендрит, несущий реснички, а от основания отходит безмиелиновый аксон. Аксоны рецепторов образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу (в коре вентральной поверхности лобной доли). Обонятельные клетки постоянно обновляются. Продолжительность их жизни – 2 мес. Запах воспринимается только тогда, когда слизистая носа увлажнена. Импульсация передается по обонятельному нерву в обонятельный луковицы (первичный центр), где уже формируется образ.

    Молекулы пахучих веществ попадают в слизь, вырабатываемые обонятельными железами, с постоянным током воздуха или из ротовой полости во время еды. Принюхивание ускоряет приток пахучих веществ к слизи. В слизи молекулы пахучих веществ на короткое время связываются нерецепторными белками. Некоторые молекулы достигают ресничек обонятельного рецептора и взаимодействуют с находящимися в них обонятельным рецепторным белком. Обонятельный белок активирует ГТФ – связывающий белок, и тот в свою очередь активирует фермент аденилатциклазу, синтезирующую ц АМФ. Повышение в цитоплазме концентрации ц АМФ вызывает открывание в плазматической мембране рецепторной клетки натриевых каналов и как следствие -генерацию деполяризационного рецепторного потенциала. Это приводит к импульсному разряду в аксоне (волокно обонятельного нерва).

    Каждая рецепторная клетка способна ответить физиологическим возбуждением на характерный для нее спектр пахучих веществ.

    Каждая обонятельная клетка имеет только один тип мембранного рецепторного белка. Сам же этот белок способен связывать множество пахучих молекул.

    Каждый обонятельный рецептор отвечает не на один, а на многие пахучие вещества, отдавая « предпочтение » некоторым из них.

    Афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону мозга.

    Один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения . При низких концентрациях пахучего вещества человек лишь ощущает запах и не может определить его качество (порог обнаружения). При более высоких концентрациях запах вещества становится опознаваемым и человек может его определить (порог опознание). При длительном действии запахового стимула ощущение ослабевает, наступает адаптация. В обонятельном восприятии у человека присутствует эмоциональный компонент. Запах может вызвать ощущения удовольствия или отвращения и при этом меняется состояние человека.

    Влияние обоняния на другие функциональные системы.

    Прямая связь с лимбической системой объясняет выраженный эмоциональный компонент обонятельных ощущений. Запахи могут вызывать удовольствие или отвращение, влияя соответствующим образом на аффективное состояние организма. Обонятельные стимулы имеют значение обонятельных стимулов в регуляции полового поведения.

    У человека встречается следующие виды нарушений обоняния : аносмия – отсутствие обонятельной чувствительности; гипосмия – понижение обоняние; гиперосмия – его повышение; паросмия – неправильное восприятие запахов; обонятельная агнозия – человек ощущает запах, но не узнает его. Обонятельные галлюцинации возникают обонятельные ощущения в отсутствии пахучих веществ. Это может быть при травмах головы, аллергических ринитах, при шизофрении.

    Электроольфактограмма – суммарный электрический потенциал, регистрируемый от поверхности обонятельного эпителия.

    Вкусовой анализатор.

    Вкусовой анализатор обеспечивает возникновение вкусовых ощущений. Его главное назначение заключается как в оценке вкусовых свойств пищи, так и в определении ее пригодности к употреблению, а так же в формировании аппетита, влияют на процесс пищеварения. Они влияют на секрецию пищеварительных желез.

    В формировании вкусовых ощущений важная роль принадлежит хеморецепции. Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот.

    Рецепторы вкуса (вкусовые почки) расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике, краях и задней части языка. Вкусовая почка имеет колбовидную форму. Вкусовая почка не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору. Железы, расположенные между сосочками, выделяют омывающую вкусовые почки жидкость.

    У взрослых сенсорные вкусовые клетки расположены на поверхности языка. Вкусовые клетки – наиболее коротко живущие эпителиальные клетки организма: в среднем через 250 ч старая клетка сменяется молодой. В узкой части вкусовой почки находятся микроворсинки рецепторных клеток, на которых расположены хеморецепторы. Они контактируют с жидким содержанием ротоглотки через небольшое отверстие в слизистой оболочке, называемое вкусовой порой.

    Вкусовые клетки генерируют при стимуляции рецепторный потенциал. Это возбуждение синаптически передается афферентным волокнам ЧМ-ых нервов, которые проводят его в мозг в виде импульсов.

    Афферентные волокна (биполярные нейроны), проводящие возбуждение от вкусовых рецепторов, представлены нервами – барабанной струной (ветвь лицевого нерва,VII),который иннервирует переднюю и боковые части языка, также языкоглоточным нервом, иннервирующим заднюю часть языка. Афферентные вкусовые волокна объединяются в солитарный тракт, который заканчивается в соответствующем ядре продолговатого мозга.

    В нем волокна образуют синапсы нейронами второго порядка, аксоны которых направляются к вентральному таламусу (здесь расположены третьи нейроны проводникового отдела вкусового анализатора), а так же центрам слюновыделения, жевание, глотание в стволе мозга. Четвертые нейроны вкусового анализатора локализуются в коре большого мозга в нижней части соматосенсорной зоны в области представительства языка (постцентральной извилине коры большого мозга). В результате обработки информации на перечисленных уровнях число нейронов с высокоспецифичной вкусовой чувствительностью возрастает. Ряд корковых клеток реагируют только на вещества с одним вкусовым качеством. Расположение таких нейронов указывает на высокую степень пространственной организации вкусового чувства.

    Большинство этих нейронов мультиполярны. Они реагируют на вкусовые, температурные, механические и ноцицептивные раздражители т.е. реагируют не только на вкус, но и на температурную и механическую стимуляцию языка.

    Вкусовая чувствительность человека.

    Человек различает четыре основных вкусовых качеств: сладкое, кислое, горькое, соленое.

    У большинства людей, отдельные участки языка обладают неодинаковой чувствительностью к веществам различного вкусового качества: кончик языка наиболее чувствителен к сладкому, боковые поверхности - к соленому и кислому, корень (основание)– к горькому.

    Чувствительность к горьким веществам существенно выше. Поскольку, они часто ядовиты, это особенность предостерегает нас от опасности, даже их концентрация в воде и пище очень низкая. Сильные горькие раздражители легко вызывают рвоту или позывы на нее. Поваренная соль в низкой концентрации кажется сладкой, чисто соленой становится только при ее повышении. Т.О. воспринимаемое качество вещества зависит от его концентрации.

    Вкусовое восприятие зависит от ряда факторов. В условиях голода отмечается повышенная чувствительность вкусовых рецепторов к различным вкусовым веществам, при насыщении, после приема пищи снижается. Такая реакция является результатом рефлекторных влияний от рецепторов желудка, и получила название ГАСТРОЛИНГВАЛЬНОГО РЕФЛЕКСА. В этом рефлексе вкусовые рецепторы выступают в роли эффекторов.

    Биологическая роль вкусовых ощущений заключается не только в проверке съедобности пищи; также влияют на процессы пищеварения. Связи с вегетативными эфферентами позволяют вкусовым ощущениям влиять на секрецию пищеварительных желез, причем не только на ее интенсивность, но и на состав, в зависимости,н-р, от того, сладкие и соленые вещества преобладают в пище.

    Вкусовое восприятие изменяется при эмоциональном возбуждении, при ряде заболеваниях.

    С возрастом способность к различению вкуса снижается. К этому же ведут потребление биологически активных веществ типа кофеина и интенсивное курение.

    Выделяют расстройства вкусового восприятия: агевзия – потеря или отсутствие вкусовой чувствительности; гипогевзия – ее понижение; гипергевзия- ее повышение; дисгевзия –расстройство тонкого анализа вкусовых ощущений.

    Вестибулярный (статокинетический) анализатор.

    Для оценки направления действия гравитационного поля т.е для определения положения организма в трехмерном пространстве и возник вестибулярный анализатор.

    Обеспечивает восприятие информации о прямолинейных и вращательных ускорениях движения тела и изменениях положения головы в пространстве, а также о действии земного тяготения. Важную роль принадлежит в пространственной ориентации человека при активном и пассивном движении, поддержании позы и регуляции движений.

    При активных движениях вестибулярная система получает, передает, анализирует информацию об ускорениях и замедлениях, возникающих процессе прямолинейного и вращательного движения, при изменении головы и пространстве.

    При пассивном движении корковые отделы запоминают направление движения, повороты, пройденное расстояние.

    В нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной систем.

    При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются.

    В целом, вся информация, идущая от вестибулярного аппарата в мозг, используется для регуляции позы и локомоций, т.е. в управлении скелетной мускулатурой.

    У человека его периферический отдел представлен вестибулярным аппаратом.

    Периферический (рецепторный) отдел анализатора представлен двумя типами рецепторных волосковых клеток вестибулярного органа. Он расположен вместе с улиткой в лабиринте височной кости и состоит из преддверия и трех полукружных каналов. В улитке располагаются слуховые рецепторы.

    Преддверие включает два мешочка:сферический (саккулюс) и эллиптический или маточку(утрикулюс).Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Они в своими устьями открываются в преддверие. Один из концов каждого канала расширен (ампула). Все эти структуры образуют перепончатый лабиринт, заполненной эндолимфой. Между перепончатым и костным лабиринтом находится перилимфа.В мешочках преддверия находится оттолитовый аппарат: скополение рецепторных клеток (вторично- чувствующие механорецепторы) на возвышения или пятнах.В ампулах полукружных каналов имеются гребешки (кристы).Пятна и гребешки содержат рецепторные эпителиальные клетки, имеющие на свободной поверхности тонкие многочисленные (40-60 штук) волоски (стереоцилии) и один более толстый и длинный волосок (киноцилию).

    Рецепторные клетки преддверия покрыта отолитовой мембраной – желеобразной массой из мукополисахароидов, содержащей значительное количество кристалликов карбоната кальция (отолитов). В ампулах желеобразная масса не содержит отолитов, называется листовидной мембраной. Волоски (реснички) рецепторных клеток погружены в эти мембраны.

    Возбуждение волосковых клеток происходит при изгибании стереоцилий в сторону киноцилий, что приводит к открытию механочувствительных ионных (калиевых) каналов (ионы К из эндолимфы по градиенту концентрации поступают в цитоплазму). Результатом такого входа ионов К является деполяризация мембраны. Возникает рецепторный потенциал, который приводит к выделению АХ в синапсах, существующие между волосковыми клетками и дендритами афферентных нейронов. Это сопровождается увеличением частоты нервных импульсов, идущих к вестибулярным ядрам продолговатого мозга.

    При смещении стереоцилий в противоположную сторону от киноцилий происходит закрытие ионных каналов, гиперполяризация мембраны и понижение активности волокно вестибулярного нерва.

    Адекватным раздражителем для рецепторных клеток преддверия являются линейные ускорения и наклоны головы или всего тела, приводящие к скольжению отолитовых мембран под действием силы тяжести и изменению положения (изгибанию) волосков. Для рецепторных клеток ампул полукружных каналов адекватным стимулом являются угловые ускорения в разных плоскостях при поворотах головы или вращения тела.

    Проводниковый отдел вестибулярного анализатора представлен афферентными и эфферентными волокнами.

    Первым нейроном, воспринимающими возбуждение волосковых клеток вестибулярного аппарата, являются биполярные нейроны, составляют основу вестибулярного узла(ганглия Скарпе), который залегает на дне внутреннего слухового прохода. Их дендриты, контактируют с волосковыми клетками в ответ на возбуждения этих клеток- рецепторов генерируют ПД, которые передаются по аксону в ЦНС по аксонам. Аксоны биполярных клеток образуют вестибулярную или преддверную часть 8пары ЧМН. В вестибулярном нерве и в покое наблюдается спонтанная электрическая активность. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при повороте в другую сторону.

    Афферентные волокна(волокна вестибулярной части нерва ) направляются к вестибулярным ядрам продолговатого мозга, от них – к таламусу, в котором происходит переключение импульсов на следующий афферентный нейрон,проводящий импульсацию непосредственно к нейронам коры большого мозга.

    Вестибулярные ядра продолговатого мозга связаны со всеми отделами ЦНС: спинным мозгом, мозжечком, РФ ствола мозга, глазодвигательными ядрами, корой головного мозга, вегетативной НС. Выделяют 5 проекционных систем.

    У большинства людей понятие «зрение» ассоциируется с глазами. На самом деле глаза – это только часть сложного органа, именуемого в медицине зрительный анализатор. Глаза являются лишь проводником информации извне к нервным окончаниям. А сама способность видеть, различать цвета, размеры, формы, расстояние и движение обеспечивается именно зрительным анализатором – системой сложной структуры, которая включает несколько отделов, взаимосвязанных между собой.

    Знание анатомии зрительного анализатора человека позволяет правильно диагностировать различные заболевания, определять их причину, выбирать правильную тактику лечения, проводить сложные хирургические операции. У каждого из отделов зрительного анализатора есть свои функции, но между собой они тесно взаимосвязаны. Если хоть какая-то из функций органа зрения нарушается, это неизменно сказывается на качестве восприятия действительности. Восстановить его можно, только зная, где скрыта проблема. Вот почему так важно знание и понимание физиологии глаза человека.

    Строение и отделы

    Строение зрительного анализатора сложное, но именно благодаря этому мы можем воспринимать окружающий мир настолько ярко и полно. Состоит он из таких частей:

    • Периферический отдел – здесь расположены рецепторы сетчатки глаза.
    • Проводниковая часть – это зрительный нерв.
    • Центральный отдел – центр зрительного анализатора локализован в затылочной части головы человека.

    Работу зрительного анализатора по своей сути можно сравнить с системой телевидения: антенной, проводами и телевизором

    Основные функции зрительного анализатора – это восприятие, проведение и обработка зрительной информации. Анализатор глаза не работает в первую очередь без глазного яблока – это и есть его периферическая часть, на которую приходятся основные зрительные функции.

    Схема строения непосредственного глазного яблока включает 10 элементов:

    • склера – это наружная оболочка глазного яблока, сравнительно плотная и непрозрачная, в ней есть сосуды и нервные окончания, она соединяется в передней части с роговицей, а в задней – с сетчаткой;
    • сосудистая оболочка – обеспечивает провод питательных веществ вместе с кровью к сетчатке глаза;
    • сетчатка – этот элемент, состоящий из клеток фото-рецепторов, обеспечивает чувствительность глазного яблока к свету. Фоторецепторы бывают двух видов – палочки и колбочки. Палочки отвечают за периферическое зрение, они отличаются высокой светочувствительностью. Благодаря клеткам-палочкам, человек способен видеть в сумерках. Функциональная особенность колбочек совершенно другая. Они позволяют глазу воспринимать различные цвета и мелкие детали. Колбочки отвечают за центральное зрение. Оба вида клеток вырабатывают родопсин – вещество, которое преобразует световую энергию в электрическую. Именно ее способен воспринимать и расшифровывать корковый отдел головного мозга;
    • роговица – это прозрачная часть в переднем отделе глазного яблока, здесь происходит преломление света. Особенность роговицы состоит в том, что в ней совсем нет кровеносных сосудов;
    • радужная оболочка – оптически это самая яркая часть глазного яблока, здесь сосредоточен пигмент, отвечающий за цвет глаз человека. Чем его больше и чем ближе он к поверхности радужки, тем темнее будет цвет глаз. Структурно радужная оболочка представляет собой мышечные волокна, которые отвечают за сокращение зрачка, который, в свою очередь, регулирует количество света, передающегося к сетчатке;
    • ресничная мышца – иногда ее называют ресничным пояском, главная характеристика этого элемента – регулировка хрусталика, благодаря чему взгляд человека может быстро сфокусироваться на одном предмете;
    • хрусталик – это прозрачная линза глаза, главная его задача – фокусировка на одном предмете. Хрусталик эластичен, это свойство усиливается окружающими его мышцами, благодаря чему человек может отчетливо видеть и вблизи, и вдали;
    • стекловидное тело – это прозрачная гелеобразная субстанция, заполняющая глазное яблоко. Именно оно формирует его округлую, устойчивую форму, а также пропускает свет от хрусталика к сетчатке;
    • зрительный нерв – это основная часть проводящего пути информации от глазного яблока в области коры головного мозга, обрабатывающие ее;
    • желтое пятно – это участок максимальной остроты зрения, он расположен напротив зрачка над местом входа зрительного нерва. Свое название пятно получило за большое содержание пигмента желтого цвета. Примечательно, что некоторые хищные птицы, отличающиеся острым зрением, имеют целых три желтых пятна на глазном яблоке.

    Периферия собирает максимум зрительной информации, которая затем через проводниковый отдел зрительного анализатора передается к клеткам коры головного мозга для дальнейшей обработки.


    Вот так схематично выглядит строение глазного яблока в разрезе

    Вспомогательные элементы глазного яблока

    Глаз человека подвижен, что позволяет улавливать большое количество информации со всех направлений и быстро реагировать на раздражители. Подвижность обеспечивается мышцами, охватывающими глазное яблоко. Всего их три пары:

    • Пара, обеспечивающая движение глаза вверх и вниз.
    • Пара, отвечающая за движение влево и вправо.
    • Пара, благодаря которой глазное яблоко может вращаться относительно оптической оси.

    Этого достаточно, чтобы человек мог смотреть в самых разных направлениях, не поворачивая головы, и быстро реагировать на зрительные раздражители. Движение мышц обеспечивается глазодвигательными нервами.

    Также к вспомогательным элементам зрительного аппарата относятся:

    • веки и ресницы;
    • конъюнктива;
    • слезный аппарат.

    Веки и ресницы выполняют защитную функцию, образуя физическую преграду для проникновения инородных тел и веществ, воздействия слишком яркого света. Веки представляют собой эластичные пластины из соединительной ткани, покрытые снаружи кожей, а изнутри – конъюнктивой. Конъюнктива – это слизистая оболочка, выстилающая сам глаз и веко изнутри. Ее функция тоже защитная, но обеспечивается она за счет выработки специального секрета, увлажняющего глазное яблоко и образующая невидимую естественную пленку.


    Зрительная система человека устроена сложно, но вполне логично, каждый элемент несет определенную функцию и тесно связан с другими

    Слезный аппарат – это слезные железы, от которых по протокам слезная жидкость выводится в конъюнктивальный мешок. Железы парные, расположены они в уголках глаз. Также во внутреннем уголке глаза находится слезное озерцо, куда стекает слеза после того, как омыла наружную часть глазного яблока. Оттуда слезная жидкость переходит в слезно-носовой проток и стекает в нижние отделы носовых проходов.

    Это естественный и постоянный процесс, никак не ощущаемый человеком. Но когда слезной жидкости вырабатывается слишком много, слезно-носовой проток не в состоянии ее принять и переместить всю одновременно. Жидкость переливается через край слезного озерца – образуются слезы. Если же, наоборот, по каким-то причинам слезной жидкости вырабатывается слишком мало или же она не может продвигаться через слезные протоки по причине их закупорки, возникает сухость глаза. Человек ощущает сильный дискомфорт, боль и резь в глазах.

    Как происходит восприятие и передача зрительной информации

    Чтобы понять, как же работает зрительный анализатор, стоит представить себе телевизор и антенну. Антенна – это глазное яблоко. Оно реагирует на раздражитель, воспринимает его, преобразует в электрическую волну и передает к головному мозгу. Осуществляется это посредством проводникового отдела зрительного анализатора, состоящего из нервных волокон. Их можно сравнить с телевизионным кабелем. Корковый отдел – это телевизор, он обрабатывает волну и расшифровывает ее. В результате получается привычная для нашего восприятия зрительная картинка.


    Зрение человека – это намного сложнее и больше, чем просто глаза. Это сложный многоступенчатый процесс, осуществляемый, благодаря слаженной работе группы различных органов и элементов

    Подробнее стоит рассмотреть проводниковый отдел. Он состоит из перекрещенных нервных окончаний, то есть информация от правого глаза идет к левому полушарию, а от левого – к правому. Почему именно так? Все просто и логично. Дело в том, что для оптимальной расшифровки сигнала от глазного яблока к корковому отделу его путь должен быть максимально коротким. Участок в правом полушарии мозга, ответственный за расшифровку сигнала, расположен ближе к левому глазу, чем к правому. И наоборот. Вот почему сигналы передаются по перекрещенным путям.

    Перекрещенные нервы далее образуют так называемый зрительный тракт. Здесь информация от разных частей глаза передается для расшифровки к разным частям головного мозга, чтобы сформировалась четкая зрительная картинка. Мозг уже может определить яркость, степень освещенности, цветовую гамму.

    Что происходит дальше? Уже почти окончательно обработанный зрительный сигнал поступает в корковый отдел, осталось только извлечь из него информацию. В этом и заключаются основные функции зрительного анализатора. Здесь осуществляются:

    • восприятие сложных зрительных объектов, например, печатного текста в книге;
    • оценка размеров, формы, удаленности предметов;
    • формирование восприятия перспективы;
    • различие между плоскими и объемными предметами;
    • объединение всей полученной информации в целостную картинку.

    Итак, благодаря слаженной работе всех отделов и элементов зрительного анализатора, человек способен не только видеть, но и понимать увиденное. Те 90% информации, которую мы получаем из окружающего мира через глаза, поступает к нам именно таким многоступенчатым путем.

    Как изменяется зрительный анализатор с возрастом

    Возрастные особенности зрительного анализатора неодинаковы: у новорожденного он еще не сформирован до конца, младенцы не могут фокусировать взгляд, быстро реагировать на раздражители, в полной мере обрабатывать полученную информацию, чтобы воспринимать цвет, размер, форму, удаленность предметов.


    Новорожденные дети воспринимают мир в перевернутом виде и в черно-белом цвете, так как формирование зрительного анализатора у них еще полностью не завершено

    К 1 году зрение ребенка становится почти таким же острым, как у взрослого человека, что можно проверить по специальным таблицам. Но полное завершение формирования зрительного анализатора наступает только к 10–11 годам. До 60 лет в среднем, при условии соблюдения гигиены органов зрения и профилактики патологий, зрительный аппарат работает исправно. Затем начинается ослабление функций, что обусловлено естественным износом мышечных волокон, сосудов и нервных окончаний.

    Получать трехмерное изображение мы можем, благодаря тому, что у нас есть два глаза. Выше уже говорилось о том, что правый глаз передает волну к левому полушарию, а левый наоборот, к правому. Далее обе волны соединяются, направляются к нужным отделам для расшифровки. При этом каждый глаз видит свою «картинку», и только при правильном сопоставлении они дают четкое и яркое изображение. Если же на каком-то из этапов происходит сбой, происходит нарушение бинокулярного зрения. Человек видит сразу две картинки, причем они различные.


    Сбой на любом этапе передачи и обработки информации в зрительном анализаторе приводит к различным нарушениям зрения

    Зрительный анализатор не напрасно сравнивают с телевизором. Изображение предметов, после того как они пройдут преломление на сетчатке, поступает к головному мозгу в перевернутом виде. И только в соответствующих отделах преобразуется в более удобную для восприятия человека форму, то есть возвращается «с головы на ноги».

    Есть версия, что новорожденные дети видят именно так – в перевернутом виде. К сожалению, рассказать об этом сами они не могут, а проверить теорию с помощью специальной аппаратуры пока что невозможно. Скорее всего они воспринимают зрительные раздражители так же, как и взрослые люди, но поскольку зрительный анализатор сформирован еще не до конца, полученная информация не обрабатывается и адаптируется полностью для восприятия. Малыш просто не справится с такими объемными нагрузками.

    Таким образом, строение глаза сложное, но продуманное и почти совершенное. Сначала свет попадает на периферическую часть глазного яблока, проходит через зрачок к сетчатке, преломляется в хрусталике, затем преобразуется в электрическую волну и проходит по перекрещенным нервным волокнам к коре головного мозга. Здесь происходит расшифровка и оценка полученной информации, а затем ее декодирование в понятную для нашего восприятия зрительную картинку. Это, действительно, схоже с антенной, кабелем и телевизором. Но намного филигранней, логичней и удивительней, ведь это создала сама природа, и под этим сложным процессом на самом деле подразумевается то, что мы называем зрением.

    Loading...Loading...