Гематоэнцефалический барьер. Другие лекарства, проникающие и не проникающие через гематоэнцефалический барьер Хорошо проникает через гематоэнцефалический барьер

Гистогематический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и органами.

Гистогематические барьеры участвуют в поддержании гомеостаза организма и отдельных органов. Благодаря наличию гистогематических барьеров каждый орган живет в своей особой среде, которая может значительно отличаться от по составу отдельных ингредиентов. Особенно мощные барьеры имеются между и мозгом, кровью и тканью половых желез, кровью и влагой камер глаза, кровью матери и плода.

Гистогематические барьеры различных органов имеют как различия, так и ряд общих черт строения. Непосредственный контакт с кровью во всех органах имеет слой барьера, образованный эндотелием кровеносных капилляров. Кроме того, структурами ГГБ являются базальная мембрана (средний слой) и адвентициальные клетки органов и тканей (наружный слой). Гистогематические барьеры, изменяя свою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для ряда токсичных веществ они непроницаемы, в чем проявляется их защитная функция.

Важнейшие механизмы, обеспечивающие функционирование гистогематических барьеров, далее рассматриваются на примере гематоэнцефалического барьера, наличие и свойства которого врачу особенно часто приходится учитывать при применении лекарственных препаратов и различных воздействий на организм.

Гематоэнцефалический барьер

Гематоэнцефалический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и тканью мозга.

Морфологической основой гематоэнцефалического барьера являются эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, астроциты нейроглии, охватывающие своими ножками всю поверхность капилляров. В перемещении веществ через гематоэнцефалический барьер участвуют транспортные системы эндотелия капиллярных стенок, включающие везикулярный транспорт веществ (пино- и экзоцитоз), транспорт через каналы с участием или без участия белков-переносчиков, ферментные системы, модифицирующие или разрушающие поступающие вещества. Уже упоминалось, что в нервной ткани функционируют специализированные транспортные системы воды, использующие белки-аквапорины AQP1 и AQP4. Последние формируют водные каналы, регулирующие образование цереброспинальной жидкости и обмен воды между кровью и тканью мозга.

Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сливаются, образуя так называемые «плотные контакты».

Гематоэнцефалический барьер выполняет для мозга защитную и регулирующую функции. Он защищает мозг от действия ряда веществ, образующихся в других тканях, чужеродных и токсичных веществ, участвует в транспорте веществ из крови в мозг и является важнейшим участником механизмов гомеостаза межклеточной жидкости мозга и ликвора.

Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологически активные вещества, например катехоламины, практически не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками , где проницаемость гематоэнцефалического барьера для многих веществ высокая. В этих областях обнаружены пронизывающие эндотелий каналы и межэндотелиальные щели, по которым идет проникновение веществ из крови во внеклеточную жидкость мозговой ткани или в сами . Высокая проницаемость гематоэнцефалического барьера в этих областях позволяет биологически активным веществам (цитокинам, ) достигать тех нейронов гипоталамуса и железистых клеток, на которых замыкается регуляторный контур нейроэндокринных систем организма.

Характерной чертой функционирования гематоэнцефалического барьера является возможность изменения его проницаемости для ряда веществ в различных условиях. Тем самым гематоэнцефалический барьер способен, регулируя проницаемость, изменять взаимоотношения между кровью и мозгом. Регуляция осуществляется за счет изменения числа открытых капилляров, скорости кровотока, изменения проницаемости клеточных мембран, состояния межклеточного вещества, активности клеточных ферментных систем, пино- и экзоцитоза. Проницаемость ГЭБ может существенно нарушаться в условиях ишемии мозговой ткани, инфицирования, развития воспалительных процессов в нервной системе, ее травматическом повреждении.

Считается, что гематоэнцефалический барьер, создавая значительное препятствие для проникновения многих веществ из крови в мозг, вместе с тем хорошо пропускает такие же вещества, образовавшиеся в мозге, в обратном направлении — из мозга в кровь.

Проницаемость гематоэнцефалического барьерадля различных веществ сильно отличается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые . Легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфеникол и др.)

Нерастворимые в липидах глюкоза и некоторые незаменимые аминокислоты не могут проходить в мозг путем простой диффузии. Углеводы узнаются и транспортируются специальными переносчиками GLUT1 и GLUT3. Эта транспортная система настолько специфична, что различает стереоизомеры D- и L-глюкозы: D-глюкоза транспортируется, а L-глюкоза — нет. Транспорт глюкозы в ткань мозга нечувствителен к инсулину, но подавляется цитохалазином В.

Переносчики участвуют в транспорте нейтральных аминокислот (например, фенилаланина). Для переноса ряда веществ используются механизмы активного транспорта. Например, за счет активного транспорта против градиентов концентрации переносятся ионы Na + , К+ , аминокислота глицин, выполняющая функцию тормозного медиатора.

Таким образом, перенос веществ с использованием различных механизмов осуществляется не только через плазматические мембраны, но и через структуры биологических барьеров. Изучение этих механизмов необходимо для понимания сути регуляторных процессов в организме.

Лекарства, из имеющих описание в настоящем справочнике, проникающие через гематоэнцефалический барьер: антимикробное средство (антибиотик) нифурател (торговое наименование лекарства Макмирор) и целый ряд других.

Не проникают: антибактериальное средство (антибиотик) амоксициллин (торговые наименования: Амоксисар, Амоксициллин, Амоксициллин в капсулах 0,25 г, Амоксициллин Ватхэм, Амоксициллин ДС, Амоксициллин натрия стерильный, Амоксициллин Сандоз, Амоксициллин-ратиофарм, Амоксициллин-ратиофарм 250 ТС, Амоксициллина порошок для суспензии 5 г, Амоксициллина таблетки, Амоксициллина тригидрат, Амоксициллина тригидрат (Пуримокс), Амосин Гоноформ, Грамокс-Д, Грюнамокс, Данемокс, Оспамокс, Флемоксин Солютаб, Хиконцил, Экобол) и другие.

При раздражении нервной клеткиувеличивается проницаемость клеточной мембраны, в результате чего ионы натрия начинают проникать внутрь волокна. Поступление положительно заряженных ионов натрия снижает электроотрицательность навнутренней стороне мембраны,разность потенциалов на мембране уменьшается. Снижение мембранного потенциала покоя называется деполяризацией мембраны. Если раздражение достаточно сильное, то изменение мембранного потенциаладостигает пороговой величины, так называемого критического уровня деполяризации, в результате чего возникает потенциал действия. Развитие потенциала действия обусловлено ионными токами. В момент, когда регистрируется пик потенциала действия, происходит лавинообразное вхождение ионов натрия через натриевые каналы мембранывнутрь нервного волокна. Поэтому внутренняя сторона мембраны временно заряжается положительно. Почти одновременно начинается медленное увеличение проницаемости для ионов калия, выходящих из клетки.Высокая натриевая проницаемость очень кратковременна - она длится всего доли миллисекунд, после чего ворота натриевых каналов закрываются. К этому моменту достигает большой величины калиевая проницаемость. Ионы калия устремляются наружу.В процессе восстановления после потенциала действия работа натрий-калиевого насоса обеспечивает «откачку» ионов натрия наружу и ""накачивание"" ионов калия внутрь, т.е. возвращение к исходной асимметрии их концентраций по обе стороны мембраны, что приводитк восстановлению исходного уровня поляризации мембраны (потенциала покоя).При действии раздражителя на нерв соблюдается так называемыйзакон "все-или- ничего": или потенциал действия невозникает вовсе - реакция "ничего" (если раздражение подпороговое), или развивается максимальная для данныхусловий амплитуда потенциала - реакция «Все» (если раздражение надпороговое).Во время развития потенциала действия мембрана полностью теряет возбудимость, т. е. никакое раздражение в этот период не. может вызвать развитие нового потенциала действия. Это состояние полной невозбудимости называется абсолютной реф-рактерностью. Как указано выше, развитие потенциала действия связано с повышением проницаемости мембраныдля ионов натрия. В период развития потенциала действия мембрана на короткое время инактивируется, т. е. утрачивает способность отвечать на какие-либо воздействия новым повышением натриевой проницаемости. Инактивация мембраны исключает возможность повторного развития потенциала действия. Вслед за периодом абсолютной рефрактерности следует период относительной рефрактерно с т и, когда возбудимое образование способно отвечать возбуждением (развитием потенциала действия) только на очень сильные раздражения. Постепенно возбудимость восстанавливается до нормального уровня. Свойство рефрактерное™ обеспечивает, в частности, одностороннее проведениеимпульса по нервному волокну. Длительность периода рефрактерности определяет важную характеристику возбудимого образования (нервного волокна, нервных и мышечных клеток) - лабильность (Н. Е. Введенский). Лабильность возбудимого образования можно охарактеризовать максимальным числом импульсов (потенциалов действия), которое оно способно воспроизвести в 1 с. Чем короче период рефрактерности, тем выше лабильность.

9. А. Нейромедиаторы и нейрогормоны Нервные клетки управляют функциями организма с помощью химических сигнальных веществ, нейромедиаторов и нейрогормонов. Нейромедиаторы - короткоживущие вещества локального действия; они выделяются в синаптическую щель и передают сигнал соседним клеткам. Нейрогормоны - долгоживущие вещества дальнего действия, поступающие в кровь. Однако граница между двумя группами достаточно условная, поскольку большинство медиаторов одновременно действует как гормоны. Сигнальные вещества - нейромедиаторы (или нейромодуляторы) должны удовлетворять ряду критериев. Прежде всего они должны продуцироваться нейронами и храниться в синапсах; при поступлении нервного импульса они должны выделяться в синаптическую щель, избирательно связываться со специфическим рецептором на постсинаптической мембране другого нейрона или мышечной клетки, стимулируя эти клетки к выполнению ими своих специфических функций. Б. Химическое строение По химическим свойствам нейромедиаторы подразделяются на несколько групп. В таблице на схеме приведены наиболее важные представители нейромедиаторов - более чем 50 соединений. Наиболее известным и часто встречающимся нейромедиатором является ацетилхолин, сложный эфир холина и уксусной кислоты. К нейромедиаторам относятся некоторые аминокислоты, а также биогенные амины, образующиеся при декарбоксилировании аминокислот (см. рис. 183). Известные нейромедиаторы пуринового ряда - производные аденина. Самую большую группу образуют пептиды и белки. Небольшие пептиды часто несут на N-конце остаток глутаминовой кислоты в виде циклического пироглутамата (5-оксопролин; однобуквенный код:

10. Аминокислоты играют важную роль в метаболизме и функционировании ЦНС. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого числа биологически важных соединений, таких как белки, пептиды, некоторые липиды, ряд гормонов, витаминов, биологически активных аминов. Аминокислоты и их дериваты участвуют в синаптической передаче, в осуществлении межнейрональных связей в качестве нейротрансмитеров и нейромодуляторов. Существенной является также их энергетическая значимость ибо аминокислоты глутаминовой группы непосредственно связаны с циклом трикарбоновых кислот. Обобщая данные об обмене свободных аминокислот в головном мозге, можно сделать следующие выводы:
1. Большая способность нервной ткани поддерживать относительное постоянство уровней аминокислот.
2. Содержание свободных аминокислот в головном мозге в 8 – 10 раз выше, чем в плазме крови.
3. Существование высокого концентрационного градиента аминокислот между кровью и мозгом за счет избирательного активного переноса через ГЭБ.
4. Высокое содержание глутамата, глутамина, аспарагиновой, N-ацетиласпарагиновой кислот и ГАМК. Они составляют 75 % пула свободных аминокислот головного мозга.
5. Выраженная региональность содержания аминокислот в различных отделах мозга.
6. Существование компартментализированных фондов аминокислот в различных субклеточных структурах нервных клеток.
7. Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

12. ОСОБЕННОСТИ МЕТАБОЛИЗМА НЕРВНОЙ ТКАНИ Дыхание На долю головного мозга приходится 2–3% от массы тела. В то же время потребление кислорода головным мозгом в состоянии физического покоя достигает 20–25% от общего потребления его всем организмом, а у детей в возрасте до 4 лет мозг потребляет даже 50% кислорода, утилизируемого всем организмом. О размерах потребления головным мозгом из крови различных веществ, в том числе кислорода, можно судить по артериовенозной разнице. Установлено, что во время прохождения через мозг кровь теряет около 8 об.% кислорода. В 1 мин на 100 г мозговой ткани приходится 53–54 мл крови. Следовательно, 100 г мозга потребляет в 1 мин 3,7 мл кислорода, а весь головной мозг (1500 г) – 55,5 мл кислорода. Газообмен мозга значительно выше, чем газообмен других тканей, в частности он превышает газообмен мышечной ткани почти в 20 раз. Интенсивность дыхания для различных областей головного мозга неодинакова. Например, интенсивность дыхания белого вещества в 2 раза ниже, чем серого (правда, в белом веществе меньше клеток). Особенно интенсивно расходуют кислород клетки коры мозга и мозжечка. Поглощение кислорода головным мозгом значительно меньше при наркозе. Напротив, интенсивность дыхания мозга возрастает при увеличении функциональной активности.

Актуальность . Существование гематоэнцефалического барьера (ГЭБ) является необходимым и наиболее важным условием для нормального функционирования центральной нервной системы (ЦНС), поэтому одной из ключевых задач, решение которой имеет не только фундаментальное, но и прикладное значение, является изучение механизмов функционирования ГЭБ. Известно, что физиологическая проницаемость ГЭБ уступает место патологической при различных видах патологии ЦНС (ишемия, гипоксия головного мозга, травмы и опухоли, нейродегенеративные заболевания), причем изменения проницаемости носят избирательный характер и зачастую являются причиной неэффективности фармакотерапии.

Гематоэнцефалический барьер (ГЭБ) - осуществляет активное взаимодействие между кровотоком и ЦНС, являясь высоко-организованной морфо-функциональной системой, локализованной на внутренней мембране сосудов головного мозга и включающей [1 ] церебральные эндотелиоциты и [2 ] комплекс поддерживающих структур: [2.1 ] базальную мембрану, к которой со стороны ткани мозга прилежат [2.2 ] перициты и [2.3 ] астроциты (имеются сообщения о том, что аксоны нейронов, которые содержат вазоактивные нейротрансмиттеры и пептиды, также могут вплотную граничить с эндотелиальными клетками, однако эти взгляды разделяются не всеми исследователями). За редким исключением ГЭБ хорошо развит во всех сосудах церебрального микроциркуляторного русла диаметром менее 100 мкм. Эти сосуды, включающие в себя собственно капилляры, а также пре- и посткапилляры, объединяются в понятие микрососуды.



Обратите внимание ! Только у небольшого количества образований головного мозга (около 1 - 1,5%) ГЭБ отсутствует. К таким образованиям относят: хориоидальные сплетения (основное), эпифиз, гипофиз и серый бугор. Однако и в этих структурах существует гематоликворный барьер, но иного строения.

читайте также пост: Нейроглия (на сайт)

ГЭБ выполняет барьерную (ограничивает транспорт из крови в мозг потенциально токсичных и опасных веществ: ГЭБ - высокоселективный фильтр), транспортную и метаболическую (обеспечивает транспорт газов, питательных веществ к мозгу и удаление метаболитов), иммунную и нейросекреторную функции, без которых невозможно нормальное функционирование ЦНС.

Эндотелиоциты . Первичной и важнейшей структурой ГЭБ являются эндотелиоциты церебральных микрососудов (ЭЦМ), которые значительно отличаются от аналогичных клеток других органов и тканей организма. Именно им отводится [!!! ] основная роль непосредственной регуляции проницаемости ГЭБ. Уникальными структурными характеристиками ЭЦМ являются: [1 ] наличие плотных контактов, соединяющих мембраны соседних клеток, как замок «молния», [2 ] высокое содержание митохондрий, [3 ] низкий уровень пиноцитоза и [4 ] отсутствие фенестр. Данные барьерные свойства эндотелия обусловливают очень высокое трансэндотелиальное сопротивление (от 4000 до 8000 W/см2 in vivo и до 800 W/см2 в кокультурах эндотелиоцитов с астроцитами in vitro) и практически полную непроницаемость монослоя барьерного эндотелия для гидрофильных веществ. Необходимые ЦНС питательные вещества (глюкоза, аминокислоты, витамины и пр.), а также все белки транспортируются через ГЭБ только активно (т.е. с затратой АТФ): либо путем рецептор-опосредованного эндоцитоза, либо с помощью специфических транспортеров. Основные отличия эндотелиоцитов ГЭБ и периферических сосудов представлены в таблице:


Кроме указанных особенностей, ЭЦМ ГЭБ секретируются вещества, регулирующие функциональную активность стволовых клеток ЦНС в постнатальном периоде: лейкемия ингибирующий фактор - LIF, нейротрофический фактор мозга - BDNF, костный морфоген - BMP, фактор роста фибробластов - FGF и др. ЭЦМ формируют и так называемое трансэндотелиальное электрическое сопротивление - барьер для полярных веществ и ионов.

Базальная мембрана . ЭЦМ окружает и поддерживает экстрацеллюлярный матрикс, который отделяет их от периэндотелиальных структур. Другое название данной структуры - базальная мембрана (БМ). Отростки астроцитов, окружающих капилляры, а также перициты внедрены в базальную мембрану. Экстрацеллюлярный матрикс является НЕклеточным компонентом ГЭБ. В состав матрикса входят ламинин, фибронектин, различные типы коллагенов, тенасцин и протеогликаны, экспрессируемые перицитами и эндотелиоцитами. БМ обеспечивает механическую поддержку окруженных ею клеток, отделяя эндотелиоциты капилляров от клеток ткани мозга. Кроме этого, она обеспечивает субстрат для миграции клеток, а также выступает в роли барьера для макромолекул. Адгезия клеток к БМ определяется интегринами - трансмембранными рецепторами, которые соединяют элементы цитокселета клетки с экстрацеллюлярным матриксом. БМ, окружая эндотелиоциты сплошным слоем, является последней физической преградой транспорту крупномолекулярных веществ в составе ГЭБ.

Перициты . Перициты являются удлиненными клетками, расположенными вдоль продольной оси капилляра, которые своими многочисленными отростками охватывают капилляры и посткапиллярные венулы, контактируют с эндотелиальными клетками, а также аксонами нейронов. Перициты передают нервный импульс от нейрона на эндотелиоциты, что приводит к накоплению или потере клеткой жидкости и, как следствие, изменению просвета сосудов. В настоящее время перициты считаются мало-дифференцированными клеточными элементами, участвующими в ангиогенезе, эндотелиальной пролиферации и воспалительных реакциях. Они оказывают стабилизирующий эффект на новые сформировавшиеся сосуды и приостанавливают их рост, влияют на пролиферацию и миграцию эндотелиальных клеток.

Астроциты . Работа всех транспортных систем ГЭБ контролируется астроцитами. Эти клетки окутывают своими окончаниями сосуды и контактируют непосредственно с эндотелиоцитами, оказывают существенное влияние на формирование плотных контактов между эндотелиоцитами и определяют свойства эндотелиоцитов ГЭБ. При этом эндотелиоциты приобретают способность к повышенной экструзии ксенобиотиков из ткани мозга. Астроциты, также как и перициты, являются посредниками в передаче регулирующих сигналов от нейронов к эндотелиоцитам сосудов через кальций-опосредованные и пуринергические взаимодействия.

Нейроны . Капилляры головного мозга иннервируются норадрен-, серотонин-, холин- и ГАМКергическими нейронами. При этом нейроны входят в состав нейроваскулярной единицы и оказывают существенное влияние на функции ГЭБ. Они индуцируют экспрессию ГЭБ-ассоциированных белков в эндотелиоцитах головного мозга, регулируют просвет сосудов головного мозга, проницаемость ГЭБ.

Обратите внимание ! Перечисленные выше структуры (1 - 5) составляют первый, [1 ] физический, или структурный компонент ГЭБ. Второй, [2 ] биохимический компонент, образован транспортными системами, которые расположены на люминальной (обращенной в просвет сосуда) и аблюминальной (внутренней или базальной) мембране эндотелиоцита. Транспортные системы могут осуществлять как перенос веществ из кровотока к мозгу (influx), так и/или обратный перенос из ткани мозга в кровоток (efflux).

Читайте также :

статья «Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 1: Строение и формирование гематоэнцефалического барьера» Блинов Д.В., ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ, Москва (журнал «Эпилепсия и пароксизмальные состояния» №3, 2013) [читать ];

статья «Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 2: Функции и механизмы повреждения гематоэнцефалического барьера» Блинов Д.В., ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ, Москва (журнал «Эпилепсия и пароксизмальные состояния» №1, 2014) [читать ];

статья «Основные функции гематоэнцефалического барьера» А.В. Моргун, Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого (Сибирский медицинский журнал, №2, 2012) [читать ];

статья «Фундаментальные и прикладные аспекты изучения гематоэнцефалического барьера» В.П. Чехонин, В.П. Баклаушев, Г.М. Юсубалиева, Н.Е. Волгина, О.И. Гурина; Кафедра медицинских нанобиотехнологий РНИМУ им. Н.И. Пирогова, Москва; ФГБУ «Государственный научный центр социальной и судебной психиатрии им. В.П. Сербского» МЗ РФ (журнал «Вестник РАМН» №8, 2012) [читать ];

статья «Проницаемость гематоэнцефалического барьера в норме, при нарушении развития головного мозга и нейро-дегенерации» Н.В. Кувачева и соавт., Красноярский государственный медицинский университет им. профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения РФ, Красноярск (Журнал неврологии и психиатрии, №4, 2013) [читать ]

читайте также пост: Нейроваскулярная единица (на сайт)


© Laesus De Liro


Уважаемые авторы научных материалов, которые я использую в своих сообщениях! Если Вы усматривайте в этом нарушение «Закона РФ об авторском праве» или желаете видеть изложение Вашего материала в ином виде (или в ином контексте), то в этом случае напишите мне (на почтовый адрес: [email protected] ) и я немедленно устраню все нарушения и неточности. Но поскольку мой блог не имеет никакой коммерческой цели (и основы) [лично для меня], а несет сугубо образовательную цель (и, как правило, всегда имеет активную ссылку на автора и его научный труд), поэтому я был бы благодарен Вам за шанс сделать некоторые исключения для моих сообщений (вопреки имеющимся правовым нормам). С уважением, Laesus De Liro.

Posts from This Journal by “нейроанатомия” Tag

  • Иннервация промежности

    СПРАВОЧНИК НЕВРОЛОГА Промежность (perineum) - это область между [нижним краем] лобкового симфиза [точнее дугообразной связкой лобка]…


  • Сосудистое сплетение головного мозга

    … остается одной из наименее изученных структур головного мозга, а проблемы физиологической и патологической ликворо-динамики, представляющие…


  • Когнитивный резерв

    Нельзя быть слишком старым человеком, чтобы улучшать работу вашего мозга. Самые последние исследования показывают, что резерв мозга можно…

ГЭБ - это гематоэнцефалический полупроницаемый барьер, находящийся между кровью и нервной тканью организма. Он препятствует проникновению в ЦНС инфекций, перекрывает доступ к мозгу крупных, полярных молекул, болезнетворных микроорганизмов, и др. Физиологи и фармацевты обозначают этот барьер аббревиатурой ГЭБ.

При снижении иммунитета, когда организм ослаблен, его проницаемость повышается. Например, возбудитель менингита - менингококк, попадая в организм, закрепляется в верхних дыхательных путях. Развиваясь, он вызывает симптомы назофарингита (насморк). Но при ослабленном иммунитете возбудитель проникает через ГЭБ, поражает оболочки головного мозга, начинает развиваться менингит.

Помимо менингококка существует множество иных разнообразных возбудителей, способных проникать через этот барьер, поражая ЦНС. Также есть и лекарственные препараты, преодолевающие гэб, антибиотики, проникающие через гэб, подавляющие активность возбудителей.

Механизмы проникновения через ГЭБ

Существует два основных пути преодоления гематоэнцефалического барьера:

Гематогенный (основной) - когда вещества проникают с кровью через стенки капилляра;
- Ликворный (дополнительный) - когда вещества проникают с помощью цереброспинальной жидкости. В этом случае он служит промежуточным звеном между кровью и нервной (глиальной) клеткой.

Через Гэб легче всего проникают молекулы небольшого размера, в частности, кислород. Либо молекулы, которые легко растворяются в липидных компонентах мембран, находящихся в глиальных клетках. Например, молекулы спирта этанола.

Используя высокоспециализированные механизмы для преодоления ГЭБ, через него проникают различные вирусы, бактерии, грибки. Например, возбудители герпеса попадают в ЦНС через нервные клетки ослабленного организма.

Традиционная медицина, фармакология, используют преимущества ГЭБ. С учетом проницаемости барьера разрабатывают эффективные лекарственные препараты. Например, фармакологическая промышленность выпускает синтетические обезболивающие на основе морфина. Однако в отличие от морфина - чистого вещества, препараты на его основе не проникают сквозь гематоэнцефалический барьер. Поэтому такое лекарство эффективно избавит от боли, но не сделает пациента морфиновым наркоманом.

Большинство антибиотиков обладает проникающей способностью. Эти препараты незаменимы при лечении пациентов, когда инфекция преодолела барьер. Поэтому так важно использовать эти препараты для эффективного лечения. Однако их передозировка может привести к серьезным негативным последствиям - параличам и гибели нервов. Поэтому самолечение антибиотиками недопустимо.

Антибиотики проникающие через гэб

Гематоэнцефалический барьер обладает избирательной проницаемостью для тех или иных биологически активных веществ. В частности некоторые из них, например, катехоламины, практически лишены такой возможности. Хотя все же существуют небольшие участки по соседству с гипофизом, эпифизом и несколькими участками гипоталамуса, где эти вещества могут преодолеть барьер.

При назначении лечения учитывается проницаемость гематоэнцефалического барьера. Например, практическая гастроэнтерология учитывает этот фактор для оценки интенсивности побочных эффектов на органы пищеварения при применении определенных препаратов. В данном случае предпочтение отдается лекарствам, хуже преодолевающим гематоэнцефалический барьер.

Если говорить про антибиотики, проникающие через гэб, нужно упомянуть Нифурател. Этот антибиотик известен под торговой маркой Макмирор. Хорошо преодолевают барьер прокинетики 1 поколения: Церукал, Реглан, где действующим веществом является метоклопрамид, а также Бимарал, где активным веществом является Бромоприд.

Проникает через барьер и последующие поколения прокинетиков, например: Мотилиум, Мотилак, где активным веществом является Домперидон. А вот Ганатон и Итомед (действующее вещество Итоприд) уже хуже проникают через ГЭБ.

Но наибольшая степень проницаемости отмечена у антибиотиков: Цефазолина и Ампициллина.
Нужно также отметить, что проницаемость разных веществ через ГЭБ сильно различается. Например, жирорастворимые, средства обычно легче преодолевают его, чем водорастворимые.

Хорошо приникают через барьер такие соединения, как кислород, углекислый газ и никотин, а также этиловый спирт, героин и жирорастворимые антибиотики, например, Хлорамфеникол и др.

Какие антибиотики не проникают через ГЭБ?

Многие лекарственные препараты не обладают способностью преодолевать барьер, либо она сильно затруднена. В частности, к таким веществам относят амоксициллин. Этот антибиотик является активным веществом в таких препаратах, как Амоксициллин, Амоксисар, Амоксициллин Ватхэм, Амоксициллин натрия стерильный.

Известен он также под такими торговыми марками, как: Амоксициллин ДС, Амоксициллин Сандоз, Амоксициллина тригидрат, Данемокс, Оспамокс, Флемоксин Солютаб, Хиконцил, Экобол и др. Небольшая степень проницаемости у гентамицина, меропенема, цефотаксима и цефтриаксона.

В заключение необходимо отметить, что оценивать степень проникновения антибиотиков через
ГЭБ нужно не только по абсолютной концентрации назначаемых препаратов. Увеличить их проницаемость можно при совместном введении антибиотика и комплекса средств, который состоит из 1% раствора фуросемида, лидазы и БЛОК.

И, наоборот, совместное введение антибиотика с 40% раствора глюкозы, либо 25% раствора сернокислой магнезии понижает коэффициент проницаемости для всех известных антибиотиков. Имейте это в виду.

По определению Штерн, (ГЭБ, blood-brain barrier (BBB))- это совокупность физиологических механизмов и соответствующих анатомических образований в центральной нервной системе, участвующих в регулировании состава цереброспинальной жидкости (ЦСЖ). Это определение из книги Покровского и Коротько "Физиология человека" .

Гематоэнцефалический барьер регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.
В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее:
1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка;
2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, характеризующим определенный физиологический механизм. Как любой существующий в организме физиологический механизм, гематоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;
3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятельности и метаболизма нервной ткани.
Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.
Проницаемость гематоэнцефалического барьера зависит от функционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Гистологическая структура


Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.
Ведущим компонентом гематоэнцефалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения вещества в клетки мозга:
- через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь)
- через стенку капилляра.
У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Морфологическим субстратом ГЭБ являются анатомические элементы, расположенные между кровью и нервными клетками (так называемые межэндотелиальные контакты, охватывающие клетку в виде тесного кольца и препятствующие проникновению веществ из капилляров). Отростки глиальных клеток (концевые ножки астроцитов), окружающие капилляр, стягивают его стенку, что уменьшает фильтрационную поверхность капилляра, препятствует диффузии макромолекул. Согласно другим представлениям, глиальные отростки являются каналами, способными избирательно экстрагировать из кровотока вещества, необходимые для питания нервных клеток, и возвращать в кровь продукты их обмена. Важное значение в функции ГЭБ придается так называемому ферментному барьеру. В стенках микрососудов мозга, окружающей их соединительнотканной стромы, а также в сосудистом сплетении обнаружены ферменты, способствующие нейтрализации и разрушению поступающих из крови веществ. Распределение этих ферментов неодинаково в капиллярах разных структур мозга, их активность изменяется с возрастом, в условиях патологии.

Функционирование ГЭБ

В основе функционирования ГЭБ лежат процессы диализа, ультрафильтрации, осмоса, а также изменение электрических свойств, растворимости в липидах, тканевого сродства или метаболической активности клеточных элементов. Важное значение в функционирование придается ферментному барьеру, например, в стенках микрососудов мозга и окружающей их соединительнотканной стромы (гематоэнцефалический барьер) - обнаружена высокая активность ферментов - холинэстеразы, карбоангидразы, ДОФА-декарбоксилазы и др. Эти ферменты, расщепляя некоторые биологически активные вещества, препятствуют их проникновению в мозг.
Водорастворимые молекулы не могут свободно диффундировать между кровью и ЦСЖ из-за непроницаемых жестко связанных соединений между эпителиальными клетками сосудистых сплетений, вместо этого эпителиальные клетки переносят определенные молекулы с одной стороны барьера на другую. Как только молекулы попадают в ЦСЖ, они диффундируют через «протекающий» эпителиальный слой и достигают интерстициальной жидкости, окружающей нейроны и глиальные клетки.
1.Эндотелиальная клетка
2.Плотное соединение
3.Церебральный капилляр
4.Нейрон
5.Глюкоза
6.Интерстициальная жидкость
7.Глиальная клетка
8.Эпендимный слой

1.Хориоидальное сплетение, эпителиальная клетка
2.Капилляр
3.Плотное соединение
4.Эпендимный слой

Эпителиальные клетки переносят определенные молекулы из капилляров внутрь желудочков головного мозга. Поток ионов, пересекающий ГЭБ (кровь-ЦСЖ) регулируется несколькими механизмами в сосудистом сплетении:
1.Кровеносный сосуд (плазма)
2.Базолатеральная (нижнебоковая) поверхность
3.Эпителиальная клетка сосудистого сплетения
4.Жесткая связь
5.Желудочки
6.Апикальная (верхняя) поверхность
7.СМЖ в желудочке
8.Ионный обмен

Молекулы воды в эпителиальных клетках диссоциируют на ионы водорода и гидроксильные ионы. Гидроксильные ионы комбинируются с двуокисью углерода, которая является продуктом клеточного метаболизма. На поверхности базолатеральных клеток ионы водорода обмениваются на внеклеточные ионы натрия из плазмы. В желудочках мозга ионы натрия активно переносятся через апикальную поверхность клетки (верхушку). Это сопровождается компенсаторным движением ионов хлорида и бикарбоната в ЦСЖ. Для поддержания осмотического равновесия вода движется в желудочки.

Проницаемость и регуляция ГЭБ

ГЭБ рассматривают в качестве саморегулирующейся системы, состояние
которой зависит от потребностей нервных клеток и уровня метаболических
процессов не только в самом мозге, но и в других органах и тканях
организма. Проницаемость ГЭБ неодинакова в разных отделах мозга,
селективна для разных веществ и регулируется нервными и гуморальными
механизмами. Важная роль в нейрогуморальной регуляции функций ГЭБ
принадлежит изменению интенсивности метаболических процессов в ткани
мозга, что доказывается угнетающим влиянием ингибиторов метаболических
процессов на скорость транспорта аминокислот в мозг и стимуляцией их
поглощения субстратами окисления.
Регуляция функций гематоэнцефалического барьера осуществляется высшими отделами ЦНС и гуморальными факторами. Значительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. При различных видах церебральной патологии, например травмах, различных воспалительных поражениях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фармакологическими воздействиями можно увеличить или уменьшить проникновение в мозг различных веществ, вводимых извне или циркулирующих в крови. Проникновение в мозг в области гипоталамуса, где ГЭБ «прорван», различных патологических агентов сопровождается разнообразной симптоматикой нарушений вегетативной нервной системы. Имеются многочисленные доказательства снижения защитной функции ГЭБ под влиянием алкоголя, в условиях эмоционального стресса, перегревания и переохлаждения организма, воздействия ионизирующего излучения и т. д. В то же время экспериментально установлена способность некоторых препаратов, например пентамина, этаминал-натрия, витамина Р уменьшать проникновение в мозг определенных веществ.

ГЭБ- это система защиты мозга от внешних повреждающих факторов. Как говорилось выше, при травмах, патологических процессах она может нарушаться. Кроме того, у некоторых микробов выработались высокоспециализированные механизмы (пока малоизученные) преодоления этого барьера. Известно, что вирусы бешенства и вирусы простого герпеса (у человека) и реовирус (у экспериментальных животных) попадают в ЦНС, передвигаясь по нервам, а инкапсулированные бактерии и грибы обладают поверхностными компонентами, позволяющими им проходить через гематоэнцефалический барьер.
Таким образом, механизмы преодоления гематоэнцефалического барьера высокоспециализированы. Так, они имеются лишь у определенных серотипов возбудителей, способных вызывать менингит. Менингит новорожденных, например, вызывают только те Streptococcus agalactiae , которые относятся к серотипу III. Другие серотипы тоже патогенны, но вызывают инфекционные процессы вне ЦНС. Такая избирательность, видимо, определяется пространственной структурой капсульного полисахарида серотипа III, так как капсульные полисахариды других серотипов содержат те же компоненты, но имеют иную пространственную структуру.

ГЭБ работает как селективный фильтр, пропускающий в цереброспинальную жидкость одни вещества и не пропускающий другие, которые могут циркулировать в крови, но чужды мозговой ткани. Так, не проходят через ГЭБ адреналин, норадреналин, ацетилхолин, дофамин, серотонин, гамма-аминомасляная кислота (ГАМК), пенициллин, стрептомицин.

Билирубин всегда находится в крови, но никогда, даже при желтухе, он не проходит в мозг, оставляя неокрашенной лишь нервную ткань. Поэтому трудно получить эффективную концентрацию какого-либо лекарственного препарата, чтобы оно достигло паренхимы мозга. Проходят через ГЭБ морфий, атропин, бром, стрихнин, кофеин, эфир, уретан, алкоголь и гамма-оксимасляная кислота (ГОМК). При лечении, например, туберкулезного менингита стрептомицин вводят непосредственно в цереброспинальную жидкость, минуя барьер с помощью люмбальной пункции.

Необходимо учесть необычность действия многих веществ, введенных непосредственно в цереброспинальную жидкость. Трипановый синий при введении в цереброспинальную жидкость вызывает судороги и смерть, аналогичное действие оказывает желчь. Ацетилхолин, введенный непосредственно в мозг, действует как адреномиметик (аналогично адреналину), а адреналин, наоборот, - как холиномиметик (аналогично ацетилхолину) : артериальное давление понижается, возникает брадикардия, температура тела вначале снижается, а потом повышается.
Он вызывает наркотический сон, заторможенность и аналгезию. Ионы К+ выступают в качестве симпатомиметика, а Са2+ - парасимпатомиметика . Лобелин - рефлекторный стимулятор дыхания, проникая через ГЭБ, вызывает ряд побочных реакций (головокружение, рвоту, судороги). Инсулин при внутримышечных инъекциях снижает содержание сахара крови, а при непосредственном введении в цереброспинальную жидкость - повышает.

Все лекарства, выпускающиеся в мире, делятся на проникаюшие и не проникающие через ГЭБ. Это является большой проблемой- некоторые лекарства не должны проникать (но проникают), а некоторые наоборот- должны проникать для достижения терапевтического эффекта, но не могут в силу своих свойств. Факмакологи занимаются разрешением этой проблемы с помощью компьютерного моделирования и экспериментальных исследований.

ГЭБ и старение

Как говорилось выше, одна из важнейших частей ГЭБ- астроциты. Формирование ГЭБ и является их основной функцией в мозге.
Проблема трансформации клеток (РГ) в звездчатые астроциты в
постнатальный период развития лежит в основе астроцитной теории
старения млекопитающих.
Имеет место исчезновение эмбриональных радиальных путей миграции клеток
от места их пролиферации к местам их конечной локализации в мозгу
взрослой особи, что является причиной постмитотичности мозга
млекопитающих. Исчезновение РГ индуцирует целый каскад системных
процессов, которые названы как механизм возрастзависимого
самоуничтожения млекопитающих (МВСМ). Исчезновение клеток РГ делает
невозможной замену исчерпавших свой жизненный ресурс нейронов
(Бойко,2007).
Возрастные изменения ГЭБ еще не изучены полностью.В повреждении ГЭБ несомненную роль играют атеросклероз, алкоголизм и др. заболевания. При недостаточном функционировании ГЭБ начинается проникновение холестерина и аполипопротеина в ткань мозга, что ведет к большему повреждению ГЭБ.
Возможно, изучив возрастные изменения ГЭБ, ученые смогут приблизится к разгадке проблемы старения.

ГЭБ и болезнь Альцгеймера


Старение мозга и нейродегенеративные заболевания связаны с оксидативным стрессом, нарушением содержания металлов и воспалением, и далеко не последнюю роль в этом играет ГЭБ. Например, рецепторы гликозилированных белков (РГБ) и протеин-1, связанный с рецепторами липопротеина низкой плотности (П1-РЛП), встроенные в структуру ГЭБ, играют основную роль в регуляции обмена бета-амилоида в ЦНС, и изменение активности этих двух рецепторов может способствовать накоплению бета-амилоида в ЦНС с последующим развитием воспаления, нарушением баланса между мозговым кровообращением и метаболизмом, изменением синаптической передачи, повреждением нейронов и отложением амилоида в паренхиме и сосудах головного мозга. А в результате- болезнь Альцгеймера. Накопление аполипопротеина в периваскулярном (околососудистом) пространстве- ключевой момент в развитии этого страшного заболевания, которое распространяется все с большей скоростью и уже поражает лиц моложе 40 лет. О роли аполипопротеина и повреждении астроцитов ГЭБ пишут немецкие авторы под руководством Dr. Dietmar R. Thal из Department of Neuropathology , University of Bonn .
Кроме того, некоторые исследователи считают, что болезнь Альцгеймера может носить и аутоиммунную природу- проникновение церебрального протеина в кровоток через дефицитарный ГЭБ. В сосудистой системе образуются антитела, атакующие мозг при повторном переходе через барьер.

Многие ученые связывают развитие нейродегенеративных заболеваний и поддержание нервных стволовых клеток с активностью ABC transporters- АТФ-связывающих транспортеров. ABCB-семейство этих транспортеров обнаружено в ГЭБ. В недавней статье исследовательской группы под руководством профессора Jens Pahnke из Neurodegeneration Research Laboratory (NRL) , Department of Neurology, University of Rostock обсуждаются накопленные данные. Ученые полагают, что благодаря изучению роли и функционирования ABC transporters можно будет глубже понять патогенез болезни Альцгеймера, создать новые подходы в терапии и математические методы для расчета риска.
В апреле 2008 года в BBC News появилось сообщение Джонатана Гейгера из University of North Dakota о том, что ежедневное употребление одной чашки кофе в день укрепляет гематоэнцефалический барьер, защищая мозг от вредного воздействия холестерина. Исследователи под руководством Джонатана Гейгера кормили кроликов пищей с высоким содержанием холестерина. Кроме того, некоторые животные ежедневно получали воду, содержащую 3 мг кофеина (что эквивалентно одной чашке кофе). Спустя 12 недель, у кроликов, получавших кофеин, гематоэнцефалический барьер оказался значительно прочнее, чем у их собратьев, употреблявших обычную воду, сообщил Гейгер. Гистологическое исследование мозга кроликов показало повышение активности астроцитов – клеток микроглии мозга, а также снижение проницаемости ГЭБ. Новые данные могу помочь в борьбе с болезнью Альцгеймера, при которой происходит повышение уровня холестерина в крови пациентов и, как следствие разрушение ГЭБ, полагают ученые.

Другим средством от болезни Альцгеймера могут стать ионофоры- аналоги 8- гидрокси- хинолина (PBT2), которые действуют на метал-индуцированную агрегацию амилоида. Об этом В 2006 году ученые из Department of Chemical and Biological Engineering , University of Wisconsin-Madison под руководством Eric V. Shusta продемонстрировали способность нервных стволовых клеток эмбрионального мозга крыс стимулировать приобретение клетками кровеносных сосудов свойств гематоэнцефалического барьера .
В работе использовались стволовые клетки мозга, выращиваемые в виде нейросфер. Такие клетки синтезируют факторы, воздействие которых на эндотелиальные клетки, выстилающие внутреннюю поверхность сосудов мозга, заставляет их формировать плотный барьер, не пропускающий малые молекулы, обычно свободно проникающие через сосудистую стенку.
Авторы отмечают, что формирование такого зачаточного гематоэнцефалического барьера происходит даже при полном отсутствии астроцитов – клеток, обеспечивающих поддержание структуры и функционирования структур мозга, в том числе гематоэнцефалического барьера, но появляющихся в больших количествах только после рождения.
Тот факт, что развивающиеся клетки мозга стимулируют превращение эндотелиальных клеток в клетки гематоэнцефалического барьера, не только проливает свет на механизмы, обеспечивающие безопасность мозга. Авторы планируют создать аналогичную модель гематоэнцефалического барьера с использованием человеческих эндотелиальных и нервных стволовых клеток. Если их попытки увенчаются успехом, то в распоряжении исследователей-фармакологов в скором будущем появится функционирующая модель человеческого гематоэнцефалического барьера, помогающая в преодолении препятствий, стоящих на пути нейробиологов, врачей и разработчиков лекарственных средств, пытающихся найти способы доставки в мозг тех или иных препаратов.

В заключение

В заключение хотелось бы сказать, что гематоэнцефалический барьер- удивительная структура, которая защищает наш мозг. Сейчас ведется множество исследований ГЭБ, в основном их ведут фармакологические компании и эти исследования имеют своей целью определение проницаемости ГЭБ для различных веществ, в основном кандидатов на роль лекарств от тех или иных заболеваний. Но этого недостаточно. С проницаемостью ГЭБ связано страшное возраст-ассоциированное заболевание- болезнь Альцгеймера. С проницаемостью ГЭБ связано старение мозга. Старение ГЭБ ведет за собой старение других структур мозга, а метаболические изменения в стареющем мозге ведут за собой изменения функционирования ГЭБ.
Можно выделить несколько задач для исследователей:
1) Определение проницаемости ГЭБ для различных веществ и анализ накопленных экспериментальных данных -необходимо для создания новых лекарств.

2) Исследование возрастных изменений ГЭБ.

3) Изучение возможностей регуляции функционирования ГЭБ.

4) Изучение роли изменений ГЭБ в возникновении нейродегенеративных заболеваний

Сейчас необходимы исследования этих вопросов, потому что болезнь Альцгеймера "молодеет". Может быть, научившись правильно регулировать функциональное состояние ГЭБ, научившись укреплять его, научившись понимать глубинные метаболические процессы в мозге ученые наконец-то найдут средства от возраст-ассоциированных заболеваний мозга и
старения...

Loading...Loading...